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Abstract. Reflexive (most..., including himself and reciprocal (no...
except each other) determiners are anaphoric determiners. They form
arguments of transitive verbs which cannot occur in subject position
of sentences. Various logical properties (invariance, conservativity, a-
conservativity, a-intersectivity) of functions denoted by these determin-
ers are studied. These properties account for their anaphoricity and show
formal differences between anaphoric and ordinary determiners.

1 Introduction

According to the well-established terminology, (“ordinary”) determiners are
functional expressions which take one or more common nouns (CNs) as arga-
ments and give a noun phrase, (NP), as result. For instance every, most, five,
no ercept two and more... than... are determiners. Syntactically NPs are argu-
ments of intransitive, transitive or ditransitive verb phrases (VPs), that is thev
can occur as subjects, direct or indirect objects. There are, however, expressions
which are arguments of verbs but which cannot occur in all argumental position
of the verb, and thus, which are not, strictly speaking NPs:

(1) a. Leo and Lea kissed each other.
b. * Each other kissed Leo and Lea.

(2) a. Leo and Lea washed themselves.
b. *(They)selves washed Leo and Lea.

The reciprocal each other is an argument of the verb kiss in {1) where it
occurs as a direct object. As shown in {1b)} this reciprocal cannot occur in the
subject position. Similarly, the reflexive themselves occurs in the object position
in (2a) but it does not have the (corresponding) nominative form which could
occur in the subject position.

Reciprocals and reflexives belong to the class of generalised NPs (GNPs)
that is these nominal expression which typically falfil the function of arguments
of the main clause and thus can serve as arguments of (transitive) VPs, Obvi-
ously “ordinary” NPs are also GNPs. However, reciprocals and reflexives are
proper (genuine) GNPs because, contrary to “ordinary” NPs, proper GNPs can-
not occur in all argumental positions of a transitive VP, in particular they can-
not occur in the subject pesitions, not even in the subject positions of simple
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186 R. Zuber

intransitive sentences. Typical examples of such GNPs are the reflexive pronouns
himself/herself/themselves and the reciprocal pronoun each other. These can be
Booleanly combined with other GNPs, proper or “ordinary”, to give complex
GNPs such as each other but not themselves, himself and most students, ten
students including each other and themselves, etc. Here are some examples of
sentences containing Booleanly complex GNPs:

(3) a. Leo admires himself and most linguists.
b. * Himself and most linguists admire Leo.

(4) a. Leo and Lea admire themselves and each other.
b. *Themselves and each other admire Leo and Lea.

In this paper I do not study GNPs in general, even if some differences between
ordinary NPs and genuine GNPs will be indicated in Sect. 4. I will study here,
in a preliminary way, functional expressions forming some GNPs. Functional
expressions forming ordinary NPs, that is (nominal) determiners forming a DP
(or a NP) from a CN have been extensively studied. Formal properties of (full)
reciprocals and reflexives are studied in Zuber (2016). In this paper I analyse
formal properties of (1) reflexive determiners (RefDets) that is functional expres-
sions which take a CN as argument and form a reflexive GNP (like for instance
most..., including himself and Lea) and (2) reciprocal determiners (RecDets),
that is functional expressions which take a CN as argument and give a recipro-
cal GNP as result (like for instance no... ezcept each other and themselves). Both
these classes of functional expressions form generalised determiners (GDets). In
addition, as will be shown below, GNPs formed by GDets considered here are
anaphors. In that sense they are different from other GDets forming GNPs such
as the same or a different number of, which do not form anaphors when applied
to a CN.

I will be specifically interested in logical and semantic properties of func-
tions denoted by RefDets and by RecDets. These properties will indicate for-
mal similarities and differences between “ordinary” determiners (those forming
“ordinary” DPs with a CN) and GDets considered here. They will also indi-
cate differences and similarities between reflexives and reciprocals. Two kinds of
such properties wiil be discussed: those related to the anaphoricity of reflexive
and reciprocal determiners and those related to the conservativity of functions
they denote. Concerning conservativity, two, logically related, types of it will be
discussed, one of which is characteristic for anaphoric determiners.

In the next section we indicate in some detail the data we will be concerned
with. Then formal tools from the extended Generalised Quantifier Theory are
recalled. In Sect.4 the semantics of various RefDets and RecDets is provided
and Sect. 5 discusses formal properties which show differences and similarities
between functions denoted by anaphoric determiners and quantifiers denoted by
ordinary determiners.
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2 Some Data

RefDets and RecDetds have been only scarcely discussed even if much more have
been written about RefDets. Both these classes can be divided into possessive
and non-possessive GDets. Some (but not all) languages have “marked” or mor-
phologically simple possessive RefDets. The possessive anaphoric pronoun SVOJ
in Slavic languages (as opposed to EGO) or hans in Norwegian (both meaning
roughly his/her own) are probably well-known (Zuber 2009). The Polish pronoun
swdj can in addition combine with virtually any other “ordinary” determiner to
give a series of complex possessive RefDets which in English corresponds to the
series like all of his own, most of his oun, ten of his own, etc.

Concerning possessive RecDets we have the possessive form each other’s and
various Boolean combination of it with “ordinary” (non anaphoric) possessives
determiners. Thus each other’s but not Bill’s ..., everybody’s, including each
other’s... are possessive RecDets as in the following examples:

(5) a. Leo and Lea help each other’s but not Bill’s (students).
b. Leo and Lea help each other’s and their own (students).

Interestingly, in Polish, the possessive RefDet SVOJ can, in many situations
have the meaning corresponding to possessive RecDet each other’s.

Non-possessive RefDets and RecDets are obtained from specific “ordinary”
determiners. One can distinguish two classes of such RefDets: those obtained
from, roughly speaking, inclusive determiners, and those obtained from exclusive
determiners (Zuber 1998, Zuber 2010b). Inclusive determiners are discontinuous
determiners of the form Det,..., including EXP (where Det is an ordinary simple
determiner denoting a monotone increasing (on the second argument) type (1,1)
quantifier) and exclusive determiners are determiners of the form every/no...
except EXP The expression EXP is the complement of including or of except.
Both these classes of determiners form a NP when applied to a CN.

By replacing the complement EXP of including by an expression which
denotes a PI function {see below) we get inclusive anaphoric RefDets. Thus
inclusive anaphoric RefDets are expressions of the form Det, including him-
self/herself or of the form Det, including NP and himself/herself. For example
the following expressions are RefDets: most...including herself, most...including
some Albanians and himself, ten...including herself and two Japanese, etc. The
last determiner occurs in (6a). Observe that (6a) means (6b) and apparently
cannot mean (6c). This fact is related to the anaphoricity of the determiner
involved in (6a):

(6) a. Lea admires ten students, including herself and two Japanese.

b. Lea admires ten students including herself and two Japanese stu-
dents.

c. Lea admires ten students including herself and two Japanese which
are not students.
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There are also “negative” inclusive determiners from which we can obtain
Ref Dets and RecDets. In the following examples no..., not even himself is such
a RefDet and no... not even each other is such a RecDet:

(7)  a. Leo admires no linguist, not even himself.

b. Leo and Leo admire no linguist, not even each other

We will not analyse here such “negative” inclusive anaphoric determiners.

Exclusive ordinary determiners are determiners such as every...except Leo,
every... but two, mo...except Japanese, no...except Albanian and Sue, etc. By
replacing in them the complement of except by a reflexive GNP (that is an
expression whose denotation satisfies PI and does not satisty EC) we can form
RefDets like the following: every... except himself, no...except Leo and herself.
The following sentence contains such a RefDet:

(8) Leo and Lea hate every linguist except themselves.

Not surprizingly, non-possessive RecDets can also be formed from the inclu-
sive and exclusive “ordinary” determiners by putting as the complement of
wncluding or of except a reciprocal GNP. Thus in (9a) and (9b) we have RecDets
based on inclusive “ordinary” determiners and in (10a), (10b) and (10c) -
RecDets based on exclusive determiners:

(9) a. Leo and Lea hate most vegetarians, including each other.

b. Most teachers admire some Japanese, including each other and
themselves.

(10) Leo and Lea admire no philosopher except each other and Plato.

I

b. Three linguists admire every linguist except each other.
¢. Two monks admire no philosopher, except each other and themselves.

This way of constructing non-possessive RefDets and RecDets from the ordi-
nary inclusive and exclusive determiners is productive in many languages.

Let us see now some differences between possessive and non-possessive
anaphoric determiners in their relation to the class of “ordinary” determiners.
Up to now we have considered only unary determiners. Natural languages have
also n-ary determiners (Keenan and Moss 1985). For instance (11a) can natu-
rally mean what (11b) means in which case most...and... should be considered
as binary determiner. In other words the admiration of Leo concerns two groups
of people: a group of linguists and a group of philosophers. Similarly in (12) we
have a binary determiner more...than...:

(11)  a. Leo admires most linguists and philosophers.

b. Leo admires most linguists and most philosophers.

(12) Lea knows more linguists than philosophers.
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One observes that possessive RefDets and RecDets can take many CNs as
arguments as seen in (13} and (14):

(13) Leo burnt more of his own paintings than letters.
(14) Leo and Bill like each other’s books and articles.

It does not seem that there are non-possessive RefDets or non-possessive
RecDets taking many nominal arguments: in (15) and in (16) only one group of
people is involved, those who are linguists and philosophers “at the same time”:

(15) Leo and Lea admire most linguists and philosophers, including
themselves.

(16) Leo and Lea admire all linguists and philosophers, except each other.

In addition to ezcept and including some other connectors can be used to
form non-possessive anaphoric determiners. This is the case with apart from and,
possibly, in addition to. Constructions with such connectors will be ignored in
what follows.

In the next section we give the semantics for various types of anaphoric
determiners presented above. Even if it is possible to extend various definitions
given in the preceeding section to n-ary determiners, we will consider only the
semantics of unary determiners. Furthermore, we will not provide the semantic
description of possessive anaphoric determiners. Semantic properties of some
possessive determiners are discussed in Zuber (2009).

3 Formal Preliminaries

We will consider binary relations and functions over a universe E, assumed to
be finite throughout this paper. D(R) denotes the domain of the relation R. The
relation 7 is the identity relation: I = {{x,y} : = y}. If R is a binary relation
and X a set then B/X = RN (X x X). The binary relation R is the greatest
symmetric part of the relation R, that is R = RN R~'. A symmetric relation
R is cross-product iff R=Ax Aor R=(Ax A)NnI for some A C E. If R is
a symmetric relation then IT(R) is the least fine partition of R such that every
of its blocks is a cross-product relation and every two blocks have incompatible
domain: if By € II(R) and By € II(R) then D(B;) N D(B;) = 0. A partition
is 1. atomic iff every of its blocks is a singleton; 2. simgular iff it contains only
one block (which is not a singleton); 3. non-trivial iff it is neither atomic nor
singular.

If a function takes only a binary relation as argument, its type is noted {2 : 7),
where 7 is the type of the output; if a function takes a set and a binary relation
as arguments, its type is noted (1,2 : 7). If 7 = 1 then the output of the function
is a set of individuals and thus its type is (2 : 1) or (1,2 : 1}. The function
SELF, denoted by the reflexive himself defined as SELF(R) = {z : (z,z) €
R}, is of type (2 : 1) and the function denoted by the anaphoric determiner
every...but himself is of type (1,2 : 1). We will consider here also the case when
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T corresponds to a set of type (1} quantifiers and thus 7 equals, in Montagovian
notation, ({{e,t}t)t}. The type of such functions will be noted either (2 : {1)) -
functions from binary relations to sets of type (1) quantifiers)) or (1,2 : (1}) -
functions from sets and binary relations to sets of type (1) quantifiers.

Basic type (1) quantifiers are functions from sets to truth-values. In this case
they are denotations of subject NPs. However, NPs can also occur in the direct
object positions and in this case their denotations do not take sets (denotations
of VPs) as arguments but denotations of TVPs (relations) as arguments. To
account for this eventuality one extends the domain of application of basic type
(1) quantifiers so that they apply to n-ary relations and have as output an (n-
1)-ary relation. Since we are basically interested in binary relations, the domain
of application of basic type (1) quantifiers will be extended by adding to their
domain the set of binary relations. When a quantifier ) acts as a “direct object”
we get its accusative case extension Qgee (Keenan and Westerstahl 1997):

Definition 1. For each type (1) quantifier @, QuecR = {a: Q(aR) = 1}, where
aR={y:{(a,y) € R}.

A type (1) quantifier Q is positive iff Q(0) = 0 and Q is atomnic iff it contains
exactly one element, that is if ¢) = {A} for some A C E. We will call a type (1)
quantifier Q natural iff either @ is positive and E € ) or @ is not positive and
E ¢ Q; Qisplural, @ € PL, iff if X € @ then |X| > 2.

A special class of type (1) quantifiers is formed by individuals: I, is an individ-
ual (generated by a € E) iff I, = {X : a € X}. More generally, F't(A), the (prin-
cipal) filter generated by a set. A, is defined as Ft(A) ={X: X CEMNAC X}
Principal filters generated by singletons are called ultrafilters. Thus individuals
are ultrafilters. They are denotations of proper names. NPs of the form FEvery
CN denote principal filters generated by the denotation of CN. Meets of two
principal filters are principal filters: Ft(A) N Ft(B) = Ft(A U B). Thus con-
junctions (supposed to denote meets) of proper names denote principal filters
generated by the union of referents of the proper names.

We will use also the property of liwing on (cf. Barwise and Cooper 1981).
The basic type (1) quantifier lives on a set A (where A C F) iff for all X C E,
R(X) =Q(X NA). If E is finite then there is always a smallest set on which a
quantifier @ lives. If A is a set on which @ lives we will write Li(Q, A) and the
smallest set on which ¢ lives will be noted SLi(Q).

A related notion is the notion of a witness set of the quantifier ), relative to
the set A on which @ lives:

Definition 2. W € Wtg(A) iff W € QAW C A A Li(Q, A).

Thus Witg(A) is the class of witness sets of @ relative to the set A on which
@ lives.

Observe that any principal filter lives on the set by which it is generated,
and, moreover, this set is its witness set. Atomic quantifiers live on the universe
E only and weakly live on their unique elements.
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“Ordinary” determiners denote functions from sets to type {1) quantifiers.
They are thus type (1, 1) quantifiers.

Accusative extensions of type (1) quantifiers are specific type (2 : 1) func-
tions. They satisfy the invariance property called accusative extension condition
EC (Keenan and Westerstahl 1997):

Definition 3. A type (2 : 1) function F' satisfies EC iff for R and S binary
relations, and a,b € E, if aR = bS then a € F(R) iff b € F(S).

Observe that if F satisfies EC then for all X C FE either F(E x X) = ()
or F(E x X) = E. Given that SELF(E x A) = A the function SELF does
not, satisfy EC. The function SELF satisfies the following weaker predicate
invariance condition PT (Keenan 2007):

Definition 4. A type (2 : 1) function F' is predicate invariant (PI) iff for R
and S binary relations, and a € E, if aR = a8 then a € F(R) iff a € F(S).

This condition is also satisfied for instance by the function ONLY-SELF
defined as follows: ONLY-SELF(R) = {z : xR = {z}}. Given that ONLY-
SELF(E x {a}) = {a}, the function ONLY-SELF does not satisfy EC.

The following proposition indicates another way to define PI:

Proposition 1. A type (2 : 1} function F is predicate invariant iff for any
z € E and any binary relation R, z € F(R) iff v € F({z} x zR).

The conditions EC and PI concern type (2 : 1) functions, considered here as
being denoted by “full” verbal arguments or GNPs. Such verbal arguments can
be syntactically complex in the sense that they are formed by the application of
generalised determiners (GDets) to CNs. For instance the GDet every...except
himself can apply to the CN student to give a genuine GNP every student ezcept
himself. In this case GDets denote type (1,2 : 1} functions. Such functions also
are constrained by invariance conditions. Thus:

Definition 5. A type (1,2 : 1) function F satisfies DIEC iff for R and S
binary relations, X C E and a,b € E, tfaRNX =bSNX thena € F(X,R) iff
be F(X,S).

Observe that if F'(X,R) satisfies D1EC then for all X,A C E either
F(X,E x A) = 0 or F(X,E x A) = E. Denotations of ordinary determin-
ers occurring in NPs which are in the direct object position satisfy D1EC.
More precisely, if D is a type (1,1} (conservative) quantifier, then the func-
tion FI(X,R) = D(X)qc(R) satisfies D1EC. Indeed, in this case F(X,R) =
{y : D(X)(yRNX) = 1} and F(X,S5) = {y : D(X)(ySN X) = 1}. So if
aRNX =bSNX thena e F(X,R)iffbe F(X,S).

Functions denoted by properly anaphoric determiners (ones which form
GNPs denoting functions satistying PI but failing EC) do not satisfy D1EC.
For instance the function F(X,R) = {y : X NyR = {y}} denoted by the
anaphoric determiner no... except himself/herself does not satisfy D1EC. To see
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this observe that for A = {a} and X such that a € X one has F(X, Ex A) = {a}
and thus F(X,E x X) # 0 and F(X,E x X) # E.

Type (1,2 : 1) functions denoted by anaphoric determiners do not satisfy
D1EC. They satisfy the following weaker condition (Zuber 2010b):

Definition 6. A type (1,2 : 1) function F satisfies D1PI (predicate invariance
for unary determiners) iff for R and S binary relations X C E, and x € E, if
zRNX =zSNX thenz € F(X,R) iff c € F(X,S).

The following proposition indicates an equivalent way to define D1PI:

Proposition 2. A type (1,2 : 1) function F' satisfies D1PI iff for any z € E,
X C E, any binary relation R one hasz € F(X,R) iff v € F(X, ({z} x X)NR).

The above invariance principles concern type (2 : 1) and type (1,2 : 1)
functions. We need to present similar “higher order” invariance principles for
type (2 : (1)) and type (1,2 : (1)) functions that is functions having as output a
set of type (1) quantifiers. This is necessary because, as we will see, some type
(1,2 : (1)) functions are denotations of RecDets.

One can distinguish various kinds of type (2 : (1)} and type (1,2 : (1))
functions. Observe first that any type (2 : 1) function whose output is denoted
by a VP can be lifted to a type (2 : (1)) (type {{{e,t}t)t) in Montague notation)
function. This is in particular the case with the accusative extensions of a type
(1) quantifier. For instance the accusative extension of a type {1) quantifier can
be lifted to type {2 : (1)) function in the way indicated in (17). Such functions
will be called accusative lifts. More generally, if F is a type {2 : 1) function, its
lift F'X, a type {2 : (1)) function, is defined in (18):

(17) Qgcc(R) = {Z : Z(Qacc(R)) = 1}'
(18) FL(R) = {Z: Z(F(R)) = 1}.

The variable Z above runs over the set of type (1) quantifiers.
For type (2 : (1)) functions which are lifts of type (2 : 1) functions we have:

Proposition 3. If a type (2 : (1)) function F is a lift of a type (2 : 1) function
then for any type (1) quantifiers Q1 and Q2 and any binary relation R, if Q1 €
F(R) and Qo € F(R) then (Q1 A Q2) € F(R).

For type (2 : (1)) functions which are accusative lifts we have:

Proposition 4. Let F' be a type (2 : {1)) function which is an accusative lift.
Then for any A,B C E, any binary relation R, Ft(A) € F(R) and Ft(B) €
F(R) iff Ft(AU B) € F(R).

Accusative lifts satisfy the following higher order extension condition HEC
(Zuber 2014):
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Definition 7. A type (2: (1)) function F' satisfies HEC (higher order extension
condition) iff for any natural type (1) quantifiers Q1 and Q2 with the same
polarity, any A, B C E, any binary relations R, S, if Li(Q1, A), Li(Q2, B) and
VGEAVbEB(G‘R = bS) then Ql € F(R) %ﬁQQ S F(S)

Functions satisfying HEC have the following property:

Proposition 5. Let F satisfies HEC and let R = E x C, for C C E arbitrary.
Then for any X C E either Ft(X) € F(R) or for any X, Ft(X) ¢ F(R)

Thus a function satisfying HEC condition and whose argument is the cross-
product relation of the form E x A, has in its output either all principal filters
or no principal filter.

It follows from Proposition 5 that lifts of genuine predicate invariant functions
do not satisfy HEC. They satisfy the following weaker condition (Zuber 2014):

Definition 8. A tupe (2 : (1)) function F satisfies HPI (higher order predicate
invariance) iff for type (1} quantifier @, any A C E, any binary relations I, S,
if Li(Q, A) and Voca(aR = aS) then Q € F(R) iff Q € F(S).

An equivalent way to define HPI is given in Proposition 6:

Proposition 6. Function F satisfies HPI iff if Li(Q,A) then Q € F(R) iff
Qe F((Ax E)NR)

The above definitions of HEC and of HPI easily extend to type (1,2 : (1})
functions, which are, as we will see, denotations of RecDets:

Definition 9. A type (1,2 : (1)) function F satisfies DIHEC (higher order
extension condition for unary determiners) iff for any natural type (1) quantifiers
Q1 and Qs with the same polarity, any A, B C E, any binary relations R, S, if
Li(Q1,A), Li(Q2,B) and VoeaVoep(aRN X =bS N X) then Q1 € F(X,R) iff
Q2 € F(X,5).

Definition 10. A fype (1,2 : (1)) function F satisfies D1HPI (higher order
predicate invariance for unary determiners) iff for any type (1) quantifier Q,
any A C E, any binary relations R, S, if Li(Q, A) and Voea(aRNX = aSNX)
then Q € F(X,R) iff Q € F(X, S).

The condition D1HPI can also be characterised as in:

Proposition 7. F(X, R) satisfies D1HPI iff if Q lives on A then Q € F(X, R)
if Qe F(X,(Ax X)NR)

The second series of properties of functions we will discuss concerns conser-
vativity. Recall first the constraint of conservativity for type (1,1) quantifiers:

Definition 11. F € CONS iff F(X,Y)=F(X,XNY) forany X,Y CE
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Conservative quantifiers have two important sub-classes: intersective and co-
intersective quantifiers (Keenan 1993): a type (1,1) quantifier F' is intersective
(resp. co-intersective) iff F'(X;,Y]) = F(X5,Y5) whenever X1 NY; = XonN Y5
(resp. Xin }/1’ =XsN YQI)

All the above properties of quantifiers can be generalised so that they apply
to simple and higher order functions (Zuber 2010a):

Definition 12. A function F' of type (1,2 : 7) is conservative iff F(X,R) =
F(X,(Ex X)NR).

Definition 13. A type (1,2 : 7) function is intersective ff F(X;,R1) =
F(Xg3, Rs) whenever (E x X1)N Ry = (E x X3)N Ry.

Definition 14. A type {1,2 : 7) function is co-intersective iff F(X1,R;) =
F(X3, Ra) whenever (E x X1) N R} = (E x X3) N R5.

As in the case of type {1, 1) quantifiers it is possible to give other, equivalent,
definitions of intersectivity for type (1,2 : 7) functions:

Proposition 8. F is intersective iff F(X,R) = F(E,(E x X)NR).

One can notice that intersective and co-intersective functions are conserva-
tive. Furthermore, the type (1,2 : 1) function F(X, R) = D(X),c.(R) and the
type (1,2 : (1)) function F(X,R) = D(X)L..(R) are intersective if D is an
intersective type (1, 1) quantifier. In Sect. 5 we will additionally define stronger
properties of conservativity, intersectivity and co-intersectivity, properties which
are displayed by anaphoric but not by ordinary determiners.

Interestingly for functions satisfying D1PT or D1HPI we have:
Proposition 9. Any function satisfying D1PI or D1HPI is conservative.

Observe that most of the above definitions do not depend on the type 7 and
thus they apply to type (1,2 : 1) and type (1.2 : (1)) functions.

4 Semantics of Anaphoric Determiners

For simplicity we will consider that reciprocals formed from RecDets give rise
only to full (logical) reciprocity. This means, informally, that given a group of
participants in an action described by a transitive verb which can be interpreted
as involving reciprocity, all members of the group are in this relation with each
other. Indeed, it seems that contrary to the interpretation of the full recipro-
cal each other complex reciprocals cannot easily get a weaker interpretation of
reciprocity (cf. Dalrymple et al. 1998).

As we have seen, we are considering sentences of the form given in (19) - for
RefDets and in (20) - for RecDets:
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(19) NP TVP RefDet(CN)
(20) NP TVP RecDet(CN)

In order to present semantics and some formal properties of RefDets and
RecDets the first thing we have to do is to determine their grammatical category
and the type of functions they denote. This problem is solved for RefDets: since
they form reflexive GNPs by applying to a CN and reflexive GNPs denote type
{2 : 1) functions, RefDets denote a type (1,2 : 1) function. Reciprocal GNPs and
ReeDets differ in many respects from reflexive GNPs and RefDets respectively.
Both these classes also differ from ordinary dets and ordinary NPs. We have
already seen some syntactic differences. To see semantic differences between
genuine {anaphoric) GNPs and ordinary NPs consider the following examples:

(21) a. Leo and Lea hug each other.
b. Bill and Sue hug each other.

(22) Leo, Lea, Bill and Sue hug each other.

Clearly (21a) in conjunction with (21b) does not entail (22). Thus, given Propo-
sition 3, functions denoted by reciprocal GNPs are not lifts of type (2 : 1}
functions and the conjunction and is not understood pointwise. Hence, to avoid
the type mismatch and get the right interpretations we will consider that the
GNPs each other denotes a type (2 : {1)) function and RecDets denote type
{1,2 : {1}) functions.

We can now look at the semantics of anaphoric determiners. We consider
first the class of inclusive anaphoric determiners. As we have seen, a frequent
form of inclusive RefDets is giver in {23), (where Det is an ordinary determiners
denoting a monatonic {on the second place) type (1,1} quantifier), CONJ is
a binary operator. The part CONJ NP can be omitted. An example of the
determiner of the form (23) is given in (6a). Some other examples are given in
(24a) and (24b). As these examples show the Boolean operator CONJ needs not
to be a “simple conjunction™:

(23)  Det...including himself CONJ NP

(24) a. Dan kissed most students including himself, Leo and Lea.

b. Dan hates most monks including himself but not most Japanese
(monks).

c. Dan hateg ten logicians including himself or Leo.

The functions denoted by RefDets of the from {23} is given in (25), where D
is the denotation of Det, & - the denotation of CONJ and NP denotes ¢

(25) FIXRy={y-ye XA gy e RAy e DX)alR) @Yy € Qacc(R) A
SLi(Q,A) € X}
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To give the semantics of anaphoric RecDets we will use the partition
II(R%/X). Our definitions will be definitions “be cases” which are determined
by the fact that the partition IT(R®/X) is atomic, singular or non-trivial. Thus
(27) gives the semantics for RecDets of the form (26), where the Ft(G)NP is a
NP denoting the principal filter generated by the set G and EXT(X) = {X}:

(26) Det... including each other CONJ Ft(G)NP

(27) (i) F(X,R) =0 if RS/X =0 or II(R%/X) is atomic
(i) F(X,R) = {Q : Q € PLALiI(Q,X)NEXT(D(B)) CQ®Q €
FPHX NG)L (R)} if II(R®/X) is singular and B is its only block.
(iii) F(X,R) = {Q : Q € PL A Li(Q,X) A3p(B € II(R5/X) A
Q(D(B)=1)®Q € Ft(X NG)L,(R)} if II(R®/X) is non-trivial.

Clause (i) takes into account the fact that NPs like nobody, no two individuals,
no three students, etc. cannot occur in the subject position of sentences of the
form (26). When the partition has only one block B (clause (ii)) then this block
is a product relation and only members of the domain of B are in the mutual
relation determined by R.

Let us see now functions denoted by exclusive Ref Dets and exclusive
RecDets. Various results concerning exclusive RefDets are given in Zuber
(2010b). Exclusive determiners denote intersective or co-intersective type (1, 1)
quantifiers. Such quantifiers form atomic Boolean algebras whose atoms are
uniquely determined by sets. More precisely atoms of the intersective algebra
are functions At such that At4(X)(Y) =1if X NY = A and atoms of the co-
intersective algebra are functions Atp such that Atp(X)(Y)=1iff XNY' = B,
(A,B,X,Y CE).

Atoms of intersective and co-intersective algebras are denoted precisely by
exclusive dets which have as the complement of except a conjonction of proper
names. Thus, roughly speaking, exclusive determiners with No denote atoms of
the intersective algebra and exclusive determiners with Every denote atoms of
the co-intersective algebra. For instance the determiner no...except Leo denotes
the atomic intersective quantifier determined by the singleton {L} whose only
element is Leo and the determiner every...except Leo and Lea denotes the atom
of co-intersective functions determined by the set composed of Leo and Lea.

Consider now some examples of type (1,2 : 1) functions and RefDets denoting
them (cf. Zuber 2010b). Let At4 be the (intersective or co-intersective) atom
determined by the set A. The type (1.2 : 1) function Fa4;, given in (28) is an
anaphoric function based on the atomic quantifier At4. Furthermore, if At4 is
intersective then Fla;, is intersective and if Af,4 is co-intersective then Fay, is
co-intersective:

(28) Fat (X, R)={z:z¢ AN Atgu103(X)(zR) =1}

Let us see some functions which are instances of (28) for illustration. Take
the type (1,1) quantifier NO. It is the atomic intersective quantifier determined
by the empty set. Thus A = 0, Aftg = NO and consequently, given the values of
NQO, the anaphoric function Fyo based on NO is given in (29):
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(29) Fyo(X,R)={z: X NzR = {z}}

The function in (29) is the denotation of the RefDet no...except himself/herself.

If Aty = EVERY-BUT-{L} (where EVERY-BUT-{L}(X,Y) =1iff XN
Y’ = {L}) then the anaphoric function based on EVERY-BUT-{L} is given in
(30). This function is the denotation of the anaphoric determiner every... except
Leo and himself (if Leo refers to L) which occurs in (31):

(30) Fgyvery-Bur—{1}(X,R)={z: X NzR = {z,L}}
(31) Dan admires every linguist except Leo and himself.

Thus (28) gives us a class of functions which are denotable by RefDets.

Let us see now the functions denoted by some exclusive RecDets. To do this
we will also use the partition IT(R%/X). In (32) we have the function denoted
by the reciprocal determiner no...except each other:

(32) (i) F(X,R)={Q:Q € PLA-TWO(E) C Q}if RS/X = Qor II(R%/X)
is atomic
(i) F(X,R) ={Q : Q € PLADB)xD'(B)NR =0ABNI =
BAEXT((D(B)) C Q} if II(R%/X) has B as its only block.
(iii) F(X,R) = {@ : Q € PLA3pg(B € HR/X))Iw(W €
Witq(SLi(Q)A(W xW)NI') = BAD(B)x D'(B)NR = 0} if IT(R%/X)

is non-trivial.

To illustrate (32) let R = {{a,b), (b,a),({a,c),(c,d),(d,c)} and E = X =
{a,b,c,d}. In this case RS/X = {By, By}, where By = {(a,b), (b,a)} and By =
{{c,d), (d,c)} and thus the clause (iii) applies. Consequently (I;Al) & F(X, R) -
because {a,c) € R, and (I;Aly) € F(X,R). If R=(AxA)NI', where A=X =
{a,b,c} then II(R°/X is singular with B = R and D(B) = A. Hence, given
clause (ii) EXT(A) € F(X,R), I, Ay ANI.) € F(X,R), , NI.) € F(X,R). In
addition, for instance @ = —(I. A I3) € F(X, R) because EXT(A) C Q.

To obtain the function denoted by every... except each other observe the
following equivalence (supposing that like is the negation of dislike):

(33) Leo and Lea like every student except each other.

(34) Leo and Lea dislike no student except each other.
We can thus consider that the function G(X, R) denoted by every...except
each other can be obtained from the function F'(X, R) denoted by no... ezcept

each other by changing the relational argument into its Boolean complement:
G(X,R)=F(X,R').

5 Formal Properties

The functions described in the previous section are anaphoric in the sense that
they satisfy predicate invariance conditions D1PT or D1HPI and do not satisfy
the weaker conditions D1EC or DIHEC. This is easy to see for functions in
(25), (29) and (30). To show that functions denoted by RecDets do not satisfy
D1HEC we can use Proposition 10, analogous to Proposition 5:
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Proposition 10. Let F' satisfies DIHEC and let R = E x C, for C C E
arbitrary. Then for any A C E either Ft(A) € F(X,R) or for any X, Ft(A) ¢
F(X,R)

Using Proposition 10 one can show that function in (32) and the function
denoted by every..., except each are anaphoric.

Examples of RefDets discussed above suggest that functions they denote
satisfy a constraint stronger than conservativity. Observe that the anaphoric
functions given in (25), (28) and (29) all have the property given in (35):

(35) F(X,R)CX.

This is also true of denotations of anaphoric determiners formed with self and
other connectives than except or including. It is easy to see that the determiner
like five..., in addition to Lea and himself also denotes a function which satisfies
the condition given in (35). We see for instance that in (6a) Lea is a student and
in (8) Leo and Lea are linguists.

Interestingly, the anaphoric condition D1PI and the condition given in
(35) entail a specific version of conservativity, anaphoric conservativity (or a-
conservativity), specific to non possessive anaphoric determiners. It is defined as
follows:

Definition 15. A type (1,2 : 7) function F is a-conservative iff F(X,R) =
F(X, (X x X)N R).

The following proposition makes clearer what a-conservativity is:

Proposition 11. A type (1,2 : 1) function F' is a-conservative iff for any X C
E and any binary relations Ry end Ry if (X x X)N Ry = (X x X) N Ry then
F(X: Rl) . F(X1 R?)

Thus, informally, second, relational arguments of an a-conservative function
give rise to different values of the function only if they differ by a specific sym-
metric part formed from the first argument of the function.

Any a-conservative function is conservative. Ordinary determiners in object
position in general do not denote a-conservativce functions: if D is a (con-
servative) type (1,1) quantifier, then the type (1,2 : 1) function F(R,X) =
D(X)ace(R) is not a-conservative. For instance if D = ALL and R = E x A then
F(X,R) = ALL(X)4ee(E x 4) = E if X C A but in this case FI(X, (X x X) N
R) = ALL(X)ee((X x X)N(E x A) = X. Thus F(X,R) # F(X,(X x X)NR)
which means that F(X, R) = ALL(X)4.(R) is not a-conservative (though it is
conservative).

Concerning RefDets and a-conservativity we have:

Proposition 12. A type (1,2 : 1) function F satisfying D1PI such that
F(X,R) C X is a-conservative.
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Thus the functions denoted by (non-possessive) reflexive anaphoric determiners
are a-conservative.

When ane looks at type (1,2 : {1)} functions F(X, R}, denotations of non-
possessive RecDets, one observes that they have the property given in (36):

(36) If ¢ € F(X, R), then @ lives on X.

For instance in (9a} Leo and Lea are vegetarians and thus the quantifier
denoted by Leo and Lea weakly lives on the set VEGETARIAN. Similarly, in
(9b) most teachers are Japanese and thus the quantifier MOST(I'EACHER)
weakly lives on the set JAPANESE.

Properties indicated in {35} and (36) are related to the meaning of the con-
nectors including and ezcept. occurring in non-possessive anaphoric determiners.
Possessive anaphorie determiners do not have these properties.

For functions denoted by non-possessive RecDets which satisfy the condition
in (36) we have:

Proposition 13. Any type {1,2: (1)) conservative functions satisfying D1IHPI
and the condition in (36) is a-conservative.

‘We can thus suppose that self and each other type anaphoric determiners
denote a-conservative functions.

More can be said with respect to the class of functions dencied by anaphoric
exclusive determiners. Since they are related either to “ordinary” intersective
determiners (like no... except Leo) or to “ordinary’ co-intersective determiners
(like every... except Lea) they are provably either intersective or co-intersective
(in the sense of definitions D13 and D14 respectively). The function in (32)
is intersective and the function denoted by every..., except each other is co-
intersective.

In addition, given that the functions we consider satisfy predicate invari-
ance and condition like {35) or {36), they have a stronger property than just
intersectivity or co-intersectivity: they are a-intersective or a-co-intersective:

Definition 16. A lype {1,2 : 7) funclion F is a-intersective iff F(X:1, R1) =
F{X5, By) whenever (X1 x X;1) N Ry = (Xa x X2) N Ry.
Definition 17. A type (1,2 : 7} function F is a-co-intersective iff F{ X, R1) =
F{Xy, Ry) whenever {X: x X1) NI = (Xo x Xo) N RS,

The following proposition gives another characterisation of the a-
intersectivity and a-co-intersectivity:
Proposition 14. 4 iype (1,2 : 7} function F is a-intersective iff F(X,R) =
FEA{X xX)nR).
Proposition 15. A type (1,2 : 7} function F is a-co-interseciive iff I'{X, R) =
F(E, (X x X))YUR).

Functions which are a-intersective or a-co-intersective are a-conservative.

Functions in (29) and in (32) are a-intersective and functions in (30) and the
one denoted by every ..., except each other are a-cointersective.
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6 Conclusive Remarks

Any discussion of the meaning of (full) reflexives and reciprocals necessitates the
use of simple logical tools from the theory of relations. In this paper such tools,
in addition to the generalised quantifier theory, have been used to discuss logical
properties of anaphoric determiners, that is functional expressions which apply to
CNs and form reflexive or reciprocals. Syntactically, anaphoric determiners are
discontinuous formatives which contain as their parts “ordinary” determiners
and anaphoric pronouns like himself or each other. This fact entails the pro-
posal made here concerning the logical type of functions denoted by anaphoric
determiners: these functions take two arguments: the first argument is a set,
because they are denoted by determiners and the second argument is a binary
relation because they form simple nominal anaphors. Formal properties of such
anaphoric determiners are inherited from the properties of their parts: they are
conservative (intersective, co-intersective) because the “ordinary” determiners
that compose them are conservative (intersective, co-intersective) and they are
predicate invariant because anaphoric pronouns that compose them are predi-
cate invariant. Their anaphoricity is characterised in addition by a-conservativity
(a-intersectivity, a-co-intersectivity), a property which is not displayed by “ordi-
nary” determiners.

The results presented in this paper show that though the existence of
anaphoric determiners extends the expressive power of NLs because the functions
they denote lie outside the class of generalised quantifiers classically defined,
these functions resemble quantifiers denoted by “ordinary” nominal determiners
in certain important ways.
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