A realisational approach to variable morph ordering

Olivier Bonami1,2 & Berthold Crysmann2

1Université Paris-Sorbonne
Institut Universitaire de France

2Laboratoire de Linguistique Formelle (CNRS & U. Paris Diderot)

First AIMM
Amherst, September 2012
Introduction

- Two traditions for dealing with morphotactics
 - Sequential templates
 - Standardly used for descriptive purposes, wherever morphotactics is of any complexity
 - Linear order stated directly
 - Deviations from a rigid template commonly stated in prose
 - No agreed upon formal model
 - Stem-centric morphological composition
 - Most common approach in generative morphology
 - Morphological composition starts from the root/stem
 - Linear order derived from composition structure
 - Implemented in various formal models, including (Lieber, 1980; Anderson, 1992; Stump, 2001, etc.)

- Our goals:
 - Look at a nontrivial set of deviations from simple position class morphology
 - Provide a formal model of morphotactics where
 - Linear position is a descriptive primitive
 - There is no rule ordering of any kind
 - Morphotactics can be partially separated from exponence
 - Focus on coverage; limited to inflection.
Aspects of a typology of variable order phenomena
Aspects of a typology of variable order phenomena

- Types of conditioning
 - Phonological (e.g. Paster, 2006; Caballero, 2010; Kim, 2010)
 - Semantic (e.g. Rice, 2000; Aronoff and Xu, 2010)
 - Morpho-syntactic (e.g. Stump, 1993)

- Types of variable placement
 - Positional disambiguation (parallel position classes; Stump, 1993)
 - Variable order
 - Single morph, variation relative to stem (Swahili ambifixal classes; Stump, 1993)
 - Single morph, variation independent of stem (Fula reversible classes; Stump, 1993)
 - Multiple morphs, order-reversing (Huave, Fula)
 - Multiple morphs, order-preserving (Romance pronominal affix clusters)
 - Free permutation among position classes
 - unconstrained (Chintang prefixes)
 - partially constrained (Mari declension; French post-stem clusters)
Positional disambiguation

- Swahili subject and object agreement are realised in distinct slots (2 and 5)
- Inventories for expressing person-number-gender combinations are largely identical across functions and slots
 Only exceptions: 2nd person and 3rd singular M/WA class
- Exponents largely underspecified as to grammatical function
- Morphotactic position disambiguates to subject or object functions

<table>
<thead>
<tr>
<th>PER</th>
<th>GEN</th>
<th>SUBJECT</th>
<th>OBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>ni tu</td>
<td>ni tu</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>u m</td>
<td>ku wa</td>
</tr>
<tr>
<td>3</td>
<td>M/WA</td>
<td>a wa</td>
<td>m wa</td>
</tr>
<tr>
<td></td>
<td>M/MI</td>
<td>u i</td>
<td>u i</td>
</tr>
<tr>
<td></td>
<td>KI/VI</td>
<td>ki vi</td>
<td>ki vi</td>
</tr>
<tr>
<td></td>
<td>JI/MA</td>
<td>li ya</td>
<td>li ya</td>
</tr>
<tr>
<td></td>
<td>N/N</td>
<td>i zi</td>
<td>i zi</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>u —</td>
<td>u —</td>
</tr>
<tr>
<td></td>
<td>U/N</td>
<td>u zi</td>
<td>u zi</td>
</tr>
<tr>
<td></td>
<td>KU</td>
<td>ku —</td>
<td>ku —</td>
</tr>
</tbody>
</table>

Table: Subject and object prefixes in Swahili

Cf. Stump’s (1993) notion of parallel position classes
Variable placement relative to the stem: Swahili

- Swahili relative agreement markers either precede or follow the stem
 - suffixation (slot 7) is used with untensed verbs in the affirmative
 - prefixation (slot 4) is used in all other cases (i.e. either tensed or negative verbs)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL</td>
<td>SUBJ</td>
<td>TAM/REL.</td>
<td>OBJ</td>
<td>STEM</td>
<td>REL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRKR</td>
<td>MRKR</td>
<td>MRKR</td>
<td>MRKR</td>
<td>MRKR</td>
<td>MRKR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>na</td>
<td>ye</td>
<td>soma</td>
<td></td>
<td></td>
<td>' (person) who is reading'</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>soma</td>
<td>ye</td>
<td></td>
<td></td>
<td>' (person) who reads'</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>na</td>
<td>cho</td>
<td>ki</td>
<td>soma</td>
<td></td>
<td>' (book) which he is reading'</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>ki</td>
<td>soma</td>
<td>cho</td>
<td></td>
<td>' (book) which he reads'</td>
<td></td>
</tr>
</tbody>
</table>

- Schematically: A B C D E STEM
 A B E STEM D

Cf. Stump’s (1993) notion of ambifical position class
Variable placement on same side of the stem: Fula

- When they are suffixal, subject and object markers follow tense markers
- Standard (default) order is subject before object
- Singular objects, however, precede 1st singular subjects (reversal)

<table>
<thead>
<tr>
<th>mball u</th>
<th>don</th>
<th>mo</th>
<th>‘You (pl.) helped him.’</th>
</tr>
</thead>
<tbody>
<tr>
<td>mball u</td>
<td>mi</td>
<td>6e</td>
<td>‘I helped them.’</td>
</tr>
<tr>
<td>mball u</td>
<td>moo</td>
<td>mi</td>
<td>‘I helped him.’</td>
</tr>
</tbody>
</table>

- Schematically: STEM A B C

 Cf. Stump’s (1993) notion of reversible position classes
Variable placement of sequences: order reversing

- Huave verbal affixes (Kim, 2010):
 - Complex morphotactic systems with a wide number of position classes.
 - A number of affixes can occur on either side of the stem.
 - There are exactly two classes of mobile affixes.
 - Where these cooccur on the same side of the stem, ‘mirror effect’:

```
 x i n a-jch     'I will give it.'
 1 FT 1.SB TV-give

 x i chut-u n   'I will sit.'
 1 FT TV-sit 1.SB
 chut-u t u s   'I sat down.'
  sit CP ITR 1
```

- Schematically:

\[
\text{A} \quad \ldots \quad \text{B} \quad \text{STEM} \\
\text{STEM} \quad \text{B} \quad \ldots \quad \text{A} \\
\text{A} \quad \ldots \quad \text{STEM} \quad \text{B}
\]
Variable placement of sequences: order preserving

- Italian pronominal affixes (Monachesi, 1999):
 - Occur in a fixed order of 6 positions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[obj,1sg]:</td>
<td>[loc]:</td>
<td>[obj, 3, refl]:</td>
<td>[d-obj,3sg,m]:</td>
<td>[obj, imp]:</td>
<td>[part]:</td>
</tr>
<tr>
<td>mi</td>
<td>ci</td>
<td>si</td>
<td>lo</td>
<td>si</td>
<td>ne</td>
<td></td>
</tr>
</tbody>
</table>

- Occur on either side of the stem depending on morphosyntactic context
- Whenever two affixes cooccur, they occur in the same order on the same side of the stem.

me lo da te ‘You give it to me.’
da te me lo! ‘Give it to me!’
* da te lo me!
* lo me da te!

- Schematically:
Taking stock

- Are morphs indexed relative to the left, or relative to the stem?
 - Where order is fixed, the two options are not distinguishable
 - Ambifixal classes nicely fit with stem-relative indexing
 - Reversible position classes (Fula) show that variable placement may not keep distance from the stem constant.
 - Sequences of mobile affixes constitute decisive evidence: order preservation or reversal?
 - Mirroring attested (Huave), but both rare and limited in complexity: at most two elements, independently conditioned for each exponents
 - Order preservation (Italian): more widely attested, more complex, dependent on same condition
 - Mirroring as the unmarked option severely undermotivated

- Our observation: Italian best described by a system that allows for both types of indexing.

- Under a double indexing strategy, the stem is the only truly mobile morph in Italian.
Freely ordered position classes: Chintang

- Chintang verb prefixes (Bickel et al., 2007)
 - can be freely permuted
 - prefixes encode subject and object agreement, as well as negation
- Suffixes in Chintang, however, are strictly ordered in position classes

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>u kha ma cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
<tr>
<td>u ma kha cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
<tr>
<td>kha u ma cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
<tr>
<td>kha ma u cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
<tr>
<td>ma u kha cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
<tr>
<td>ma kha u cop yokt e</td>
<td>‘They didn’t see us.’</td>
</tr>
</tbody>
</table>

⇒ Schematically: \[
\begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
\hline
\text{STEM E} & \text{E} & \text{F}
\end{array}
\] *

⇒ Account of free permutation must be integrated with a theory of position classes
Free order with constraints: Mari declension

- Nominal declension in Mari (Luutonen, 1997):
 - The relative position of case and possessor is variable, and free in some cells

<table>
<thead>
<tr>
<th>Case</th>
<th>Nominal Form</th>
<th>Possessive Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPOSS</td>
<td>muno</td>
<td>munâ-žo</td>
</tr>
<tr>
<td>NOM</td>
<td>munâ-n</td>
<td>munâ-žâ-n</td>
</tr>
<tr>
<td>GEN</td>
<td>munâ-m</td>
<td>munâ-žâ-m</td>
</tr>
<tr>
<td>ACC</td>
<td>munâ-lan</td>
<td>munâ-ž-lan, munâ-ž-lan-že</td>
</tr>
<tr>
<td>LAT</td>
<td>mun-eš</td>
<td>mun-eš-âže</td>
</tr>
<tr>
<td>ILL</td>
<td>munâ-ško</td>
<td>munâ-škâ-žo</td>
</tr>
<tr>
<td>INES</td>
<td>munâ-što</td>
<td>munâ-štâ-žo</td>
</tr>
<tr>
<td>MOD</td>
<td>munâ-la</td>
<td>munâ-ž-la, munâ-ž-la-že</td>
</tr>
<tr>
<td>COM</td>
<td>munâ-ye</td>
<td>munâ-ž-ye</td>
</tr>
</tbody>
</table>

- Schematically: STEM \[
 \left\{ \begin{array}{c}
 A \\
 B \\
 \end{array} \right\} ^*, \text{ with pairwise constraints on } [A] \text{ and } [B].
\]

- Notice: Mari = Fula + Chintang
Free order and variable order in the same system

▶ In informal Parisian French:
 ▶ variable order of complement pronominal affixes (5 position classes) depending on mood
 ▶ relative order fixed before the stem, almost free after

<table>
<thead>
<tr>
<th>PRESENT INDICATIVE</th>
<th>IMPERATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>il me les donne</td>
<td>*il les me donne</td>
</tr>
<tr>
<td>il m’en donne</td>
<td>*il en me donne</td>
</tr>
<tr>
<td>il m’y envoie</td>
<td>*il y m’envoie</td>
</tr>
<tr>
<td>il les leur donne</td>
<td>*il leur les donne</td>
</tr>
<tr>
<td>il les en blâme</td>
<td>*il en les blâme</td>
</tr>
<tr>
<td>il les y envoie</td>
<td>*il y les envoie</td>
</tr>
<tr>
<td>il leur en parle</td>
<td>*il en leur parle</td>
</tr>
<tr>
<td>il leur y parle</td>
<td>*il y leur parle</td>
</tr>
<tr>
<td>il y en mange</td>
<td>*il en y mange</td>
</tr>
</tbody>
</table>

▶ Schematically:

![Diagram]

Notice: French = Swahili + Chintang
A formal framework for variable morphotactics
Characterizing the framework

- Similar in spirit to Paradigm Function Morphology
 - Fully lexicalist: no morphological structure visible to syntax, no syntactic operations or constraints in morphology.
 - Inferential and realizational
 - No ordering of morphosyntactic features
 - Arbitration between rules decided on the basis of Pāṇini’s Principle

- Important differences
 - Position is a property of exponents, not a property of rules.
 - Order variation through underspecification
 - HPSG-style feature logic
 - Multiple inheritance hierarchies of realization rules
 - Systematic separation between order and paradigmatic opposition
 - No rule ordering
 - No rule blocks
 - Distinction between realizing a feature and being conditioned by a feature (cf. LFG’s distinction between functional and constraining equations).
Realization rules and rule interaction

- Realization rules are triplets of
 - a description of a lexeme (inflection class, stem allomorphs, etc.),
 - a description of a morphosyntactic property set,
 - a description of a list of morphs.

\[
\begin{align*}
\text{transitive, animate} & \quad \times \quad \left\{ \begin{array}{c}
\text{indicative,} \\
\text{obj} \\
1\text{pl,} \\
\text{MR} & + \end{array} \right\} \\
\end{align*}
\]

\[\Leftrightarrow \langle \text{nan}_6 \rangle\]

(Stump, 2001, p. 90 on Potawatomi)

- The morph list of a word is the combination of the morph lists of all applicable narrowest rules.
- The phonology of a word is the concatenation of its morphs in the order imposed by their indices.
Underspecification (1): capturing shared rule properties

- Rules are organized in a (monotonic) inheritance hierarchy. This allows for easy encoding of basic morphosyntactactic constraints on morphotactics.
Underspecification (1): capturing shared rule properties

- Rules are organized in a (monotonic) inheritance hierarchy. This allows for easy encoding of basic morphosyntactic constraints on morphotactics.
Underspecification (2): capturing systematic alternation

- **Online type construction** (Koenig and Jurafsky, 1994; Koenig, 1999) facilitates separation of generalisations on morphotactics from exponence.

- **Ex.: Positional disambiguation** (parallel position classes)

Diagram:

- **realisation-rule**
- **MORPHOTACTICS**
 - \(\{\text{subj}....\} \leftarrow \langle 2 \rangle\)
 - \(\{\text{obj}....\} \leftarrow \langle 5 \rangle\)

- **EXPONENCE**
 - \(\{\text{subj, 3, sg, m-wa}....\} \leftarrow \langle a \rangle\)
 - \(\{\text{obj, 3, sg, m-wa}....\} \leftarrow \langle m \rangle\)
 - \(\{\text{direct, 3, pl, m-wa}....\} \leftarrow \langle wa \rangle\)
 - \(\{\text{direct, 3, sg, ki-vi}....\} \leftarrow \langle ki \rangle\)

Underspecification (2): capturing systematic alternation

- **Online type construction** (Koenig and Jurafsky, 1994; Koenig, 1999) facilitates separation of generalisations on morphotactics from exponence.

- **Ex.: Positional disambiguation** (parallel position classes)

```
realisation-rule

MORPHOTACTICS

{subj,...} ⇐ (→)

{obj,...} ⇐ (→)

EXPONENCE

{subj, 3, sg, m-wa} ➞ ⟨a⟩

{obj, 3, sg, m-wa} ➞ ⟨m⟩

{direct, 3, pl, m-wa} ➞ ⟨wa⟩

{direct, 3, sg, ki-vi} ➞ ⟨ki⟩

{subj, 3, pl, m-wa} ➞ ⟨wa2⟩

{obj, 3, pl, m-wa} ➞ ⟨wa5⟩
```
Underspecification (2): capturing systematic alternation

- **Online type construction** (Koenig and Jurafsky, 1994; Koenig, 1999) facilitates separation of generalisations on morphotactics from exponence.

- **Ex.: Positional disambiguation** (parallel position classes)

```
realisation-rule

MORPHOTACTICS

\{ subj, \ldots \} \overset{\Leftrightarrow}{\Rightarrow} \langle 2 \rangle
\{ obj, \ldots \} \overset{\Leftrightarrow}{\Rightarrow} \langle 5 \rangle

\{ subj, 3, sg, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle a \rangle
\{ obj, 3, sg, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle m \rangle
\{ direct, 3, pl, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle wa \rangle
\{ direct, 3, sg, ki-vi \} \overset{\Leftrightarrow}{\Rightarrow} \langle ki \rangle

\{ subj, 3, sg, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle a_2 \rangle
\{ subj, 3, pl, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle wa_2 \rangle
\{ obj, 3, pl, m-wa \} \overset{\Leftrightarrow}{\Rightarrow} \langle wa_5 \rangle
```
Underspecification (2): capturing systematic alternation

- **Online type construction** (Koenig and Jurafsky, 1994; Koenig, 1999) facilitates separation of generalisations on morphotactics from exponence.
- **Ex.:** Positional disambiguation (parallel position classes)
Swahili ambifixed relative affixes

realisation-rule

MORPHOTACTICS

\{relative, affirmative, untensed, ...\} \xmapsto{7} \langle -4 \rangle

\{rel,...\} \xmapsto{4} \langle ye \rangle

\{rel, sg, m-wa\} \xmapsto{ye} \langle vyo \rangle

EXPONENCE

\{rel, pl, ki-vi\} \xmapsto{vyo}
Swahili ambifxal relative affixes

realisation-rule

MORPHOTACTICS

\{ relative, affirmative, untensed, ... \}
\{ rel, ... \}
\{ [rel, sg, m-wa] , ... \}
\{ [rel,] , ... \}
\{ [rel, sg, m-wa] , ... \}
\{ [rel, sg, m-wa] , ... \}
\{ [rel,] , ... \}

EXPONENCE

\{ [rel, sg, m-wa] , ... \}
\{ [rel,] , ... \}
\{ [rel,] , ... \}
\{ [rel,] , ... \}

\{ ye7 \}
\{ ye4 \}

\{ ye \}
\{ vyo \}
Swahili ambifinal relative affixes

realisation-rule

MORPHOTACTICS

EXPONENCE

\[
\begin{align*}
\{ \text{relative, affirmative, untensed, ...} \} & \quad \Rightarrow \quad \langle -7 \rangle \\
\{ \text{rel, ...} \} & \quad \Rightarrow \quad \langle -4 \rangle \\
\{ \text{rel, sg, m-wa, ...} \} & \quad \Rightarrow \quad \langle \text{ye7} \rangle \\
\{ \text{rel, sg, m-wa, ...} \} & \quad \Rightarrow \quad \langle \text{ye4} \rangle \\
\{ \text{rel, pl, ki-vi, ...} \} & \quad \Rightarrow \quad \langle \text{vyo4} \rangle \\
\{ \text{rel, pl, ki-vi, ...} \} & \quad \Rightarrow \quad \langle \text{vyo7} \rangle
\end{align*}
\]
Italian I: stem selection (Montermini and Boyé, 2012)

realisation-rule
MORPHOTACTICS

\[\langle \text{Stem} \rangle \]

\[
\begin{align*}
\text{STEM4: } X & \cong \{ \text{prs } \lor \text{ imp } \}, \\
& \text{ subj, } \\
& 1 \lor 2, \text{ pl } \} \\
\implies \langle X \rangle \\
\text{STEM1: } Y & \cong \{ \text{prs, ind } \}, \\
& \text{ subj, } \\
& 2\text{pl } \} \\
\implies \langle Y \rangle \\
\text{untensed,} & \\
\implies \langle 1 \rangle \\
tensed, & \\
\implies \langle 9 \rangle \\
\end{align*}
\]

\[\{ \ldots \} \]

\[
\begin{align*}
\text{STEM4: } X & \cong \{ \text{imp } \}, \\
& \text{ subj, } \\
& 1 \lor 2, \text{ pl } \} \\
\implies \langle X_1 \rangle \\
\text{STEM1: } Y & \cong \{ \text{prs, ind } \}, \\
& \text{ subj, } \\
& 2\text{pl } \} \\
\implies \langle Y_9 \rangle \\
\text{sapere} & \cong \{ \text{prs, subj, 2pl }, \text{ d-obj, } 3\text{sg, mas }, \text{i-obj, 1sg } \} \\
\implies \langle \ldots \text{sapeake}_9 \ldots \rangle \\
\text{sapere} & \cong \{ \text{imp, subj, 2pl }, \text{ dobj, } 3\text{sg, mas }, \text{iobj, 1sg } \} \\
\implies \langle \ldots \text{sapppia}_1 \ldots \rangle \\
\end{align*}
\]
Italian I: stem selection
(Montermini and Boyé, 2012)
Italian II: clitic placement

realisation-rule

MORPHOTACTICS

{...} ⇄ ⟨Stem⟩

{untensed, ...
↓
⟨1⟩

{tensed, ...
↓
⟨9⟩

EXPONENCE

{obj,...} ⇄ ⟨4⟩

{dobj, ...
↓
⟨7⟩

{sg,...} ⇄ ⟨lo⟩

{sg, ...
↓
⟨lo⟩

{dobj, ...
↓
⟨me⟩

{...} ⇄ ⟨1⟩

{...} ⇄ ⟨4⟩

{...} ⇄ ⟨7⟩

STEM4: X ⊗

\{prs \lor \text{imp}, [\text{subj} \text{, pl, } 1 \lor 2]\}

\{\text{subj, } 2pl\}, [d-obj, 3sg, mas], [i-obj, 1sg]\}

\{\text{subj, } 2pl\}, [dobj, 3sg, mas], [iobj, 1sg]\}

\{\text{prs, subj, } 2pl\}, [d-obj, 3sg, mas], [i-obj, 1sg]\}

\{\text{prs, subj, } 2pl\}, [dobj, 3sg, mas], [iobj, 1sg]\}

\{\text{prs, subj, } 2pl\}, [dobj, 3sg, mas], [iobj, 1sg]\}
Italian II: clitic placement

realisation-rule

MORPHOTACTICS

EXPONENTCE

{sapere} \times \left\{ \begin{array}{l}
{prs, subj, 2pl},
{d-obj, 3sg, mas},
{i-obj, 1sg}
\end{array} \right\} \star \left\{ \begin{array}{c}
\cdots me_4 \cdots lo_7 \cdots sap\text{e}_9 \cdots
\end{array} \right\}

{sapere} \times \left\{ \begin{array}{l}
{imp, subj, 2pl},
{dobj, 3sg, mas},
{iobj, 1sg}
\end{array} \right\} \star \left\{ \begin{array}{c}
\cdots sapp\text{ia}_1 \cdots me_4 \cdots lo_7 \cdots
\end{array} \right\}
Italian II: clitic placement

realisation-rule

MORPHOTACTICS

EXPONENCE

\[
\text{STEM4: } X \ni \{ \text{prs} \lor \text{imp} \}, \{ \text{subj}, \text{pl}, [1 \lor 2] \}
\]

\[\ni \langle X \rangle\]

\[
\text{sapere} \ni \{ \text{prs}, [\text{subj}, 2\text{pl}], [d-obj, 3\text{sg}, \text{mas}], [i-obj, 1\text{sg}] \} \ni \langle \ldots \text{me}_4 \ldots \text{lo}_7 \ldots \text{sape}_9 \ldots \rangle
\]

\[
\text{sapere} \ni \{ \text{imp}, [\text{subj}, 2\text{pl}], [\text{dobj}, 3\text{sg}, \text{mas}], [\text{iobj}, 1\text{sg}] \} \ni \langle \ldots \text{sappia}_1 \ldots \text{me}_4 \ldots \text{lo}_7 \ldots \rangle
\]
Italian III: stems and tense/agreement affixes

realisation-rule

MORPHOTACTICS

\{ \ldots \} \mp \langle \text{Stem} \rangle

\{ \ldots \} \mp \langle \text{Stem}+2 \rangle

\{ \text{untensed}, \ldots \} \mp \langle \text{untensed} \rangle

\{ \text{tensed}, 2, \ldots \} \mp \langle \text{tensed} \rangle

\{ \text{obj}, \ldots \} \mp \langle \text{obj} \rangle

\{ \text{prs} \lor \text{imp} \}, \langle \text{prs} \lor \text{imp} \rangle

\{ \text{subj}, \ldots \} \mp \langle \text{subj} \rangle

\{ \text{d-obj}, \ldots \} \mp \langle \text{d-obj} \rangle

\{ \text{i-obj}, \ldots \} \mp \langle \text{i-obj} \rangle

\{ \text{sg} \}, \langle \text{sg} \rangle

\{ \text{pl} \}, \langle \text{pl} \rangle

\{ \text{1} \lor \text{2} \}, \langle \text{1} \lor \text{2} \rangle

\{ \text{me} \}, \langle \text{me} \rangle

\{ \text{lo} \}, \langle \text{lo} \rangle

\{ \text{sapere} \}, \langle \text{sapere} \rangle

\{ \text{sapere} \}, \langle \text{sapere} \rangle

\langle \text{me}_4, \text{lo}_7, \text{sape}_9, \text{te}_{11} \rangle

\langle \text{sappia}_1, \text{te}_3, \text{me}_4, \text{lo}_7 \rangle
Italian III: stems and tense/agreement affixes

realisation-rule

MORPHOTACTICS

\{ ... \} \mapsto \langle \text{Stem} \rangle

\{ ulntensed, ... \} \mapsto \langle 1 \rangle

\{ tensed, ... \} \mapsto \langle \text{Stem+2} \rangle

EXPOENCE

\{ obj, ... \} \mapsto \langle \text{te} \rangle

\{ obj, ... \} \mapsto \langle \text{me} \rangle

\{ [...] \} \mapsto \langle X \rangle

\langle X \rangle \mapsto \langle X \rangle

\langle sapere \rangle \ni \{ \text{prs, subj, 2pl}, [d-obj, 3sg, mas], [i-obj, 1sg] \} \ast \langle me_4, lo_7, saper_9, te_{11} \rangle

\langle sapere \rangle \ni \{ \text{imp, subj, 2pl}, [dobj, 3sg, mas], [iobj, 1sg] \} \ast \langle sappia_1, te_3, me_4, lo_7 \rangle
Chintang

realisation-rule

MORPHOTACTICS

STEM: X

\Rightarrow

$\langle X_{\text{Stem}=4} \rangle$

\Rightarrow

$\langle \ldots \rangle$

EXPONENCE

{...}

\Rightarrow

$\langle \ldots \rangle$

{...}

\Rightarrow

$\langle \ldots \rangle$

{tense,...}

{\ldots}

{neg,...}

{subj,...}

{obj,...}

{$[\text{past}]$,...}

{$[\text{eStem+2}]$}

{$[\text{3, non-sg}]$,...}

{$\langle \text{u} \rangle$}

{$[I, \text{non-sg}]$,...}

{$\langle \text{kha} \rangle$}
Chintang

MORPHOTACTICS

- Stem: X
 - \(X_{\text{Stem}=4} \)
 - \(\text{tense} \)
 - \(\text{Stem}+2 \)
 - \(\text{neg} \)
 - \(\text{ma,yokl} \text{Stem}+1 \)
 - \(\text{subj} \)
 - \(\langle \text{u} \rangle \)
 - \(\text{obj} \)
 - \(\langle \text{kha} \rangle \)
 - \(\text{past} \)
 - \(e_{\text{Stem}+2} \)
 - \(\text{subj,3,non-sg} \)
 - \(u_{\text{Stem}−n} \)
 - \(\text{obj,1,non-sg} \)
 - \(\text{kha}_{\text{Stem}−n} \)

EXPONENCE

- \(\text{neg} \)
 - \(\text{subj,3,non-sg} \)
 - \(\text{obj,1,non-sg} \)

realisation-rule
Chintang

MORPHOTACTICS

realisation-rule

EXPONENCE

[STEM: X] ∩ {...} ⟷ {X_{Stem=4}}

{[tense]...,} ⟷ {...}

{[neg]...,} ⟷ {...}

{[subj]...,} ⟷ {...}

{[obj]...,} ⟷ {...}

{[past]...,} ⟷ {...}

{[3, non-sg]...,} ⟷ {...}

{[I, non-sg]...,} ⟷ {...}

{[neg]...,} ⟷ {...}

{[subj,3,non-sg]...,} ⟷ {...}

{[obj,1,non-sg]...,} ⟷ {...}

{[eStem+2]} ⟷ {...}

{[ma,yoktStem+1]} ⟷ {...}

{[u]} ⟷ {...}

{[kha]} ⟷ {...}

{[maStem−n,yoktStem+1]} ⟷ {...}

{[uStem−n]} ⟷ {...}

{[khaStem−n]} ⟷ {...}
Conclusions

- Empirical claims:
 - Languages use a variety of morph indexing strategies
 - Absolute positions
 - Position relative to stem
 - (partially) free positioning
 - Second position: position relative to first realized morph
 - These strategies commonly interact within a single system

- Main theoretical claim: all these strategies can be modelled as varieties of positional underspecification, using inheritance hierarchies.

- Properties of the proposed framework:
 - lexicalist, inferential, realizational, Pāṇinian
 - because it is constraint-based, can easily scale up to phonological and semantic conditions on order, where these are found
 - morph-based, but actually postulates less structure in morphology than existing amorphous frameworks
 - no recursive rule application
 - no extrinsic indexing of rules
 - morph boundaries exist but are invisible both to realization rules and to postlexical phonology
Second position affixes: Sorani Kurdish

- Sorani Kurdish endoclitic person markers (Samvelian, 2007):
 - Realize either subject agreement or object pronouns depending on tense and transitivity
 - Linearize inside the verb whenever it is the first word of the VP
 - Normally linearize in second position

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>nard=jân</td>
<td>im ‘they sent me’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>na=jân</td>
<td>nard</td>
<td>im ‘they did not send me’</td>
<td></td>
</tr>
<tr>
<td>da=jân</td>
<td>nard</td>
<td>im ‘they were sending me’</td>
<td></td>
</tr>
<tr>
<td>da=jân</td>
<td>da</td>
<td>nard</td>
<td>im ‘they were not sending me’</td>
</tr>
</tbody>
</table>

- Schematically:

- Illustrates a third type of indexing: relative to the first realized element
Sorani Kurdish: two complications

- The endoclitics are really alternating between second position and an ordinary suffixal position class, depending on morphosyntactic conditions.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>nard=jân</td>
<td>im</td>
<td>‘they sent me’</td>
<td></td>
</tr>
<tr>
<td>na=jân</td>
<td>nard</td>
<td>im</td>
<td>‘they did not send me’</td>
</tr>
<tr>
<td>nard</td>
<td>-im=î</td>
<td>‘he/she sent me’</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>nard</td>
<td>-im=î</td>
<td>‘he/she did not send me’</td>
</tr>
</tbody>
</table>

- There are two recently morphologized perfect periphrases that apparently disrupt the second position effect (Walther, to appear)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2b</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>nard u=jân</td>
<td>im</td>
<td>‘they have sent me’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>na=jân</td>
<td>nard u</td>
<td>im</td>
<td>‘they haven’t sent me’</td>
<td></td>
</tr>
<tr>
<td>nard bu=jân</td>
<td>im</td>
<td>‘they have sent me’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>na=jân</td>
<td>nard bu</td>
<td>im</td>
<td>‘they haven’t sent me’</td>
<td></td>
</tr>
</tbody>
</table>
Pāṇinian competition

Can be integrated in a monotonic HPSG grammar through a closure operation on realization rules (Crysmann and Bonami, to appear)
Pāṇinian competition

Can be integrated in a monotonic HPSG grammar through a closure operation on realization rules (Crysmann and Bonami, to appear)
Pāṇinian competition
Can be integrated in a monotonic HPSG grammar through a closure operation on realization rules (Crysmann and Bonami, to appear)
Pāṇinian competition
Can be integrated in a monotonic HPSG grammar through a closure operation on realization rules (Crysmann and Bonami, to appear)
Pāṇinian competition (II)

The determination of competitors relies on a distinction between features expressed by a rule (bold italics) and features merely conditioning the application of a rule.
Pāṇinian competition (II)

The determination of competitors relies on a distinction between features expressed by a rule (bold italics) and features merely conditioning the application of a rule.
Pāṇinian competition (II)

The determination of competitors relies on a distinction between features expressed by a rule (bold italics) and features merely conditioning the application of a rule.
Pāṇinian competition (II)

The determination of competitors relies on a distinction between features expressed by a rule (bold italics) and features merely conditioning the application of a rule.