DERIVATION PREDICTING INFLECTION THE ROLE OF FAMILIES, SERIES AND MORPHOTACTICS

Olivier Bonami Université de Paris, LLF, CNRS Matteo Pellegrini University of Bergamo / University of Pavia

19th International Morphology Meeting - Vienna, February 6-9 2020

OUTLINE

- 1. Introduction
- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes
- 4. Theoretical issues
- 5. Conclusions and future work

OUTLINE

1. Introduction

- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes
- 4. Theoretical issues
- 5. Conclusions and future work

PREDICTABILITY IN INFLECTION

Recent research focusing on predictability in inflectional systems:

- set-theoretic approach: Principal Parts set of inflected wordforms from which the whole paradigm of a lexeme can be inferred with no uncertainty (Stump & Finkel, 2013);
- information-theoretic approach: use of conditional entropy to measure the uncertainty in predicting one cell from another one.

Ackerman et al. (2009): Paradigm Cell Filling Problem (PCFP)

"What licenses reliable inferences about the inflected (and derived) surface forms of a lexical item?"

NFLECTIONAL PREDICTABILITY AND DERIVATION

- Inherent properties of a lexeme can be informative on its inflectional behaviour:
 - stem phonology (Guzmán Naranjo, 2019);
 - lexical semantics (Guzmán Naranjo, 2019);
 - gender (Stump & Finkel, 2013; Pellegrini, forthcoming).
- > Another aspect that can be informative is the **derivational history** of a lexeme:
 - in some cases, the inflectional behaviour of a lexeme is determined by the derivational process by which it is formed (Bonami & Boyé, 2006);
 - in other cases, a lexeme inherits (at least partly) the inflectional behaviour of the base from which it derives (Stump 2001).

 \rightarrow The aim of our talk is exploring the interplay between these two possibilities through a quantitative analysis of large lexica

Data

> We focus on Latin verb and noun paradigms

- Source of inflectional data:
 LatInfLexi (Pellegrini & Passarotti, 2018)
 - inflected lexicon containing 3348 verbs, 1048 nouns
 - obtained semi-automatically from the database of Lemlat 3.0 (Passarotti et al., 2018)
- Source of derivational information:
 Word Formation Latin (WFL) database (Litta et al., 2016)

OUTLINE

1. Introduction

- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes
- 4. Theoretical issues
- 5. Conclusions and future work

The uncertainty in guessing the content of a paradigm cell given knowledge of another form can be measured using **conditional entropy** (cf. Bonami & Boyé, 2014; Beniamine, 2018)

A toy example with Latin data: how difficult is it to predict **PRS.ACT.IND.3**SG knowing **PRS.ACT.IND.1**SG?

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	pattern/context
'to dedicate'	dicō	dicat	XŌ-Xat / C_#
'to take a little'	lībŌ	lībat	XŌ-Xat / C_#
'to fold'	plicō	plicat	XŌ-Xat / C_#
'to fold back'	replic ō	replicat	XŌ-Xat / C_#
'to unfold'	explic ō	explicat	XŌ-Xat / C_#
'to say'	dīco	dīcit	XŌ-Xit / C_#
'to drink'	bib ō	bibit	XŌ-Xit / C_#
'to write'	scrīb ō	scrībit	XŌ-Xit / C_#
'to write in'	inscrīb ō	<i>inscrībit</i>	XŌ-Xit / C_#
'to write together'	conscrīb ō	conscrībit	XŌ-Xit / C_#

= 1 bit

Assumption: speakers do not have any information on derivational relatedness

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	pattern/context
'to dedicate'	dicō	dicat	Xō-Xat / C_#
'to take a little'	lībō	lībat	Xō-Xat / C_#
'to fold'	plic ō	plicat	Xō-Xat / C_#
'to fold back'	replic ō	replicat	Xō-Xat / C_#
'to unfold'	explic ō	explicat	Xō-Xat / C_#
'to say'	dīco	dīcit	Xō-Xit / C_#
'to drink'	bibŌ	bibit	Xō-Xit / C_#
'to write'	scrīb ō	scrībit	Xō-Xit / C_#
'to write in'	inscrīb ō	inscrībit	Xō-Xit / C_#
'to write together'	conscrīb ō	conscrībit	Xō-Xit / C_#
(to write back)	racarībā	2	P(Xō-Xat)=5/10
	rescribo	ŗ	P(XŌ-Xit)=5/10
(to call)	Noc ō	2	P(Xō-Xat)=5/10
	VULU	ŗ	P(Xō-Xit)=5/10

Assumption: speakers do not have any information on derivational relatedness

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	pattern/context
'to dedicate'	dicō	dicat	XŌ-Xat / C_#
'to take a little'	lībō	lībat	XŌ-Xat / C_#
'to fold'	plicō	plicat	XŌ-Xat / C_#
'to fold back'	replic ō	replicat	XŌ-Xat / C_#
'to unfold'	explic ō	explicat	XŌ-Xat / C_#
'to say'	dīco	dīcit	XŌ-Xit / C_#
'to drink'	bib ō	bibit	XŌ-Xit / C_#
'to write'	scrīb ō	scrībit	XŌ-Xit / C_#
'to write in'	inscrīb ō	inscrībit	XŌ-Xit / C_#
'to write together'	con <mark>scrībō</mark>	conscrībit	XŌ-Xit / C_#
'to write back'	roccrībā	С	P(XŌ-Xat)=5/5
	rescribo	:	P(XŌ-Xit)=5/5
'to call'	wacā	С	P(XŌ-Xat)=5/5
	VULU	[P(XŌ-Xit)=5/5

Assumption: speakers <u>do have information</u> on **derivational relatedness**: lexemes that derive from the **same base**

lexeme (meaning)	prs.act.ind.1sg	PRS.ACT.IND.3SG	derivational info	pattern/context
'to dedicate'	dicō	dicat	underived	XŌ-Xat / C_#
'to take a little'	lībō	lībat	underived	XŌ-Xat / C_#
'to fold'	plicō	plicat	underived	XŌ-Xat / C_#
'to fold back'	replic ō	replicat	< plico	XŌ-Xat / C_#
'to unfold'	explic ō	explicat	< plico	XŌ-Xat / C_#
'to say'	dīco	dīcit	underived	XŌ-Xit / C_#
'to drink'	bib ō	bibit	underived	XŌ-Xit / C_#
'to write'	scrīb ō	scrībit	underived	XŌ-Xit / C_#
'to write in'	inscrīb ō	inscrībit	< scribo	XŌ-Xit / C_#
'to write together'	con <mark>scrībō</mark>	conscrībit	< scribo	XŌ-Xit / C_#
'to write back'	roccrībō	2	< ccribo	P(XŌ-Xat)=0
	rescribo	!	< SCHDU	P(XŌ-Xit)=2/2
'to call'	vocō	2	underived	P(XŌ-Xat)=3/6
	VULU	ŗ	underwed	P(XŌ-Xit)=3/6

Assumption: speakers <u>do have information</u> on **derivational relatedness**: lexemes that derive from the **same base**

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	derivational info	pattern/context	underived:
'to dedicate'	dicō	dicat	underived	XŌ-Xat / C_#	$H = -\left[\left(\frac{3}{2} \cdot \log_2 \frac{3}{2}\right) + \left(\frac{3}{2} \cdot \log_2 \frac{3}{2}\right)\right] = 1 \text{ bit}$
'to take a little'	lībō	lībat	underived	XŌ-Xat / C_#	
'to fold'	plic ō	plicat	underived	XŌ-Xat / C_#	< plico:
'to fold back'	replic ō	replicat	< plico	XŌ-Xat / C_#	$H = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 0$ bit
'to unfold'	explic ō	explicat	< plico	XŌ-Xat / C_#	$H = -\left(\frac{1}{2} \cdot \log_2 \frac{1}{2}\right) = 0$ bit
'to say'	dīco	dīcit	underived	XŌ-Xit / C_#	c coribo
'to drink'	bib ō	bibit	underived	XŌ-Xit / C_#	$\langle SCIDO:$
'to write'	scrīb ō	scrībit	underived	XŌ-Xit / C_#	$H = -\left(\frac{2}{2} \cdot \log_2 \frac{2}{2}\right) = 0$ bit
'to write in'	inscrīb ō	inscrībit	< scribo	XŌ-Xit / C_#	
'to write together'	con <mark>scrībō</mark>	conscrībit	< scribo	XŌ-Xit / C_#	$\left[\begin{pmatrix} 6 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \right]$
(to write book)	rocarībā	C	< coribo	P(Xo-Xat)=0	$\mathbf{H} = \left \left(\frac{0}{10} \cdot 1 \right) + \left(\frac{4}{10} \cdot 0 \right) \right = 0. 6 \text{ bit}$
to write back	rescribo	ŗ	< SCHDO	P(Xo-Xit)=2/2	
(to coll)	1400 0	C	underived	P(Xo-Xat)=3/6	
	VUCU	ŗ	underived	P(Xo-Xit)=3/6	

Assumption: speakers <u>do have information</u> on **derivational relatedness**: lexemes that are formed by means of the **same suffix**

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	derivational info	pattern/context
'to dedicate'	dicŌ	dicat	underived	Xō-Xat / C_#
'to take a little'	lībō	lībat	underived	XŌ-Xat / C_#
'to rattle much'	crepitō	crepitat	suffix <i>-it-</i>	XŌ-Xat / C_#
'to cry out aloud'	cl ā mitō	cl ā mitat	suffix <i>-it-</i>	XŌ-Xat / C_#
'to flee eagerly'	fugitō	fugitat	suffix <i>-it-</i>	XŌ-Xat / C_#
'to say'	dīco	dīcit	underived	XŌ-Xit / C_#
'to drink'	bib ō	bibit	underived	XŌ-Xit / C_#
'to grow red'	rubē <mark>scō</mark>	rub ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#
'to become ill'	aegr ēscō	aegr ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#
'to become white'	alb ēsc ō	alb ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#
to cook oproactly	augaritā	С	cuffix it	P(XŌ-Xat)=3/3
to seek earnestly	quuento	ŗ	Sum -n-	P(XŌ-Xit)=0
'to call'	vocā	С	undarivad	P(XŌ-Xat)=2/4
	VULU	ŗ	undenved	P(XŌ-Xit)=2/4

Assumption: speakers <u>do have information</u> on **derivational relatedness**: lexemes that are formed by means of the **same suffix**

lexeme (meaning)	PRS.ACT.IND.1SG	PRS.ACT.IND.3SG	derivational info	pattern/context	underived:
'to dedicate'	dicŌ	dicat	underived	Xō-Xat / C_#	$H = -\left[\left(\frac{2}{2} \cdot \log_2 \frac{2}{2}\right) + \left(\frac{2}{2} \cdot \log_2 \frac{2}{2}\right)\right] = 1$ bit
'to take a little'	lībō	lībat	underived	XŌ-Xat / C_#	$[(4^{-1})^{2}(4^{-1})^{2}(4^{-1})^{2}(4^{-1})^{2}]$
'to rattle much'	crepitō	crepitat	suffix <i>-it-</i>	XŌ-Xat / C_#	suffix <i>-it</i> -:
'to cry out aloud'	clāmitō	cl ā mitat	suffix <i>-it-</i>	Xō-Xat / C_#	(3 3)
'to flee eagerly'	fugitō	fugitat	suffix <i>-it-</i>	XŌ-Xat / C_#	$H = -\left(\frac{1}{3} \cdot \log_2 \frac{1}{3}\right) = 0 \text{ bit}$
'to say'	dīco	dīcit	underived	XŌ-Xit / C_#	cuffix cc.
'to drink'	bib ō	bibit	underived	Xō-Xit / C_#	sullix -sc
'to grow red'	rubē <mark>scō</mark>	rub ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#	$H = -\left(\frac{3}{2} \cdot \log_2 \frac{3}{2}\right) = 0 \text{ bit}$
'to become ill'	aegr ēscō	aegr ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#	(3 3)
'to become white'	alb ē sc <mark>ō</mark>	alb ē scit	suffix <i>-sc-</i>	XŌ-Xit / C_#	
'to cook oproactly'	augaritā	С	cuffix it	P(Xō-Xat)=0	$\mathbf{H} = \left \left(\frac{4}{10} \cdot 1 \right) + \left(\frac{6}{10} \cdot 0 \right) \right = \mathbf{0.4 bit}$
to seek earnestly	quuento	:	SUTTX -IL-	P(Xō-Xit)=3/3	Lineared prost and a contract of an
'to call'	vocā	С	underived	P(XŌ-Xat)=2/4	
	VULU	ŗ	unuenveu	P(Xō-Xit)=2/4	

- What is the impact of such facts on real data?
- \rightarrow To answer this question, we compare **average implicative entropy** i.e., the conditional entropy of guessing cell A from cell B, averaged across all pairs of cells with and without different pieces of derivational information
- Classification of the verbs of LatInfLexi according to their ancestor i.e., the base from which they ultimately derive

H(A B, ancestor)	0.08
H(A B)	0.28

> Classification of the **nouns** of LatInfLexi according to the derivational **suffix** they

H(A B, suffix)	0.31
H(A B)	0.36

The inflectional behaviour of derived lexemes

> Verbs that derive from the same base usually inflect alike:

lexeme (meaning)	derivational info	PRS.ACT.IND.1SG	PRS.ACT.INF	PRF.ACT.IND.1SG	SUP.ACC
DICO ('to say')	underived	dīcō	dīcere	dīxī	dīctum
EDICO ('to declare')	< dico	ēdīcō	ēdīcere	Ēdīxī	ēdīctum
MALEDICO ('to curse')	< dico	maledīc ō	maledīcere	maledīxī	maledīctum

➤ However, there are cases of verbs related to the same base that inflect differently:

lexeme (meaning)	derivational info	PRS.ACT.IND.1SG	PRS.ACT.INF	PRF.ACT.IND.1SG	SUP.ACC
FACIO ('to make')	underived	faciō	facere	fēcī	factum
CALEFACIO ('to make warm')	< facio	calefaci ō	calefacere	calef ē cī	calefactum
INFICIO ('to put into')	< facio	inficiō	inficere	infēcī	infectum

• weakening of short vowels in non-initial syllables in Old Latin:

 $/in/+/fa.ki.o:/ \rightarrow /in.fi.ki.o:/ (open syllable); /in/+/fak.tum/ \rightarrow /in.fck.tum/ (closed syllable)$

The inflectional behaviour of derived lexemes

> Nouns formed by means of the same derivational suffix almost always inflect alike:

lexeme (meaning)	derivational info	NOM.SG	GEN.SG	ACC.SG
LAUDATIO ('praising')	suffix <i>-ti-</i>	laudātiō	laud ā ti ō nis	laudātiōnem
LARGITIO ('granting')	suffix <i>-ti-</i>	largītiō	largīti ō nis	largītiōnem

Only one exception:

lexeme (meaning)	derivational info	NOM.SG	GEN.SG	ACC.SG
TABELLA ('little board')	suffix -ll-	tabella	tabellae	tabellam
LIBELLUS ('little book')	suffix -ll-	libellus	libellī	libellum

○ diminutive suffixes transparent to the gender of the base TABULA (F) → TABELLA (F, decl. I) LIBER (M) → LIBELLUS (M, decl. II)

DISCUSSION

- Speakers can predict inflection more accurately if they know the place of a lexeme in the derivation network
- The reduction in uncertainty is very strong when the classification of verbs according to their ancestor is taken into account
- It is less relevant when taking into account the classification of nouns according to the derivational suffix they display
- However, the difference we observe is probably simply due to the different quantitative relevance of the two classifications

classification	% derived lexemes
ancestors (verbs)	64.5 %
derivational suffixes (nouns)	22.5 %

With average implicative entropy, it is difficult to carefully evaluate the different contribution of various aspects of the derivational history

OUTLINE

- 1. Introduction
- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes
- 4. Theoretical issues
- 5. Conclusions and future work

$\label{eq:predicting_linear} Predicting_{Inflection} C \\ C \\ Lass \\ assignment$

- In the previous section, the assessment of inflectional predictability was very realistic and fine-grained
 - average implicative entropy, estimating the uncertainty in the PCFP, i.e. in predicting the content of each paradigm cell, given knowledge of other inflected wordforms
 - however, in this way it is difficult to precisely evaluate the different contribution of various aspects of the derivational history
- In this section, we rely on a more coarse-grained and abstract assessment of inflectional predictability
 - we focus on uncertainty in predicting Inflection Class (IC), rather than individual wordforms
 - this allows us to be more detailed on the different facets of derivation involved

$CODING \ \text{OF} \ DERIVATIONAL \ INFORMATION$

- We classify the lexemes of our sample according to the IC they belong to and to several derivational aspects:
 - derivational family (coded using the ancestor);
 - derivational prefixes/suffixes;
 - last derivational operation performed according to WFL database.

lexeme	conjugation	derivational family	derivational prefix	derivational suffix	last operation
creo	l	creo (V)	_	_	_
cresco	III	creo (V)	_	-SC	suffixation
recreo	l	creo (V)	re-	_	prefixation
accresco	III	creo (V)	ad-	-SC	prefixation
corono	I	corona (N)	_	_	conversion

\succ We exclude:

- lexemes belonging to a family with only one member;
- lexemes displaying a prefix or suffix that only appears once in our dataset;
- \circ compound lexemes.

We then compute the conditional entropy of predicting IC given information on different derivational predictors

	verbs (2851)	nouns (367)
H(IC)	1.94	1.979
H(IC family)	0.373	0.929
H(IC prefix)	1.875	1.855
H(IC suffix)	1.82	1.121
H(IC family, prefix)	0.109	0.233
H(IC family, suffix)	0.174	0.172
H(IC prefix, suffix)	1.816	0.580
H(IC family, prefix, suffix)	0.105	0.093

- The derivational family is a very good predictor, especially for verbs
- Prefixes are poor predictors for both verbs and nouns
- Suffixes seem to be poor predictors for verbs, better for nouns
- Joint knowledge of the three pieces of information leads to almost perfect predictability

> Only lexemes that contain a suffix:

	verbs (246)	nouns (163)
H(IC)	0.989	1.606
H(IC suffix)	0	0.066
H(IC family)	0.144	0.44
IG(IC,family)	0.845	1.166

> Only lexemes that contain a prefix:

	verbs (2145)	nouns (86)
H(IC)	1.949	1.988
H(IC prefix)	1.896	1.539
H(IC family)	0.249	0.635
IG(IC,family)	1.7	1.353

- In suffixed lexemes, knowledge of the suffix leads to (almost) perfect predictability
- In prefixed lexemes, knowledge of the prefix provides little to no information
- H(IC|family) is lower for suffixed lexemes than for prefixed lexemes
- This happens because the overall distribution of ICs is more uniform among suffixed lexemes, especially for verbs: see the values of unconditioned entropy H(IC)
- However, the information gain IG(IC,family) i.e., the difference between H(IC) and H(IC|family) – is higher in prefixed lexemes

To sum up:

- derivational suffixes are highly predictive of IC;
- > derivational prefixes are not very informative on IC membership;
- derivational families:
 - are overall good predictors;
 - but they allow for a greater information gain for prefixed lexemes than for suffixed lexemes.

This suggests that IC membership is mostly determined by the **last morph** in the stem – the one adjacent to inflectional affixes

To check this, we code the first (leftmost) and last (rightmost) morph (excluding inflectional affixes) appearing in each lexeme in our sample

lexeme	conjugation	family	prefix	suffix	last operation	first morph	last morph
creo	I	creo (V)	_	_		creo	creo
cresco		creo (V)	_	-SC	suffixation	creo	-SCO
recreo	I	creo (V)	re-	_	prefixation	re-	creo
accresco		creo (V)	ad-	-SC	prefixation	ad-	-sco

\succ We then compute:

- H(IC|last) the conditional entropy of guessing IC knowing the last morph
- H(IC|first) the conditional entropy of guessing IC knowing the first morph

	verbs (2851) r	nouns (367)
H(IC)	1.94 [•]	1.979
H(IC last)	0.223 0	0.303
H(IC first)	1.532 0	0.955
H(IC family)	0.373 0	0.929

Last morph:

- much better predictor than the first morph
- even more predictive than the derivational family

OUTLINE

1. Introduction

- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes

4. Theoretical issues

5. Conclusions and future work

MORPHS MATTER!

> Our results are due to a systematic asymmetry between prefixation and suffixation:

prefixed lexemes

 \rightarrow inflectional behavior inherited from the base

e.g. CONFERO 'bring together': PRS.ACT.IND.1SG *con-ferō*, PRF.ACT.IND.1SG *con-tulī* (like in the base FERO 'bring': PRS.ACT.IND.1SG *ferō*, PRF.ACT.IND.1SG *tulī*)

suffixed lexemes

 \rightarrow inflectional behavior specified by the process

e.g. LAUDATIO 'praising': NOM.SG *laudā-tio*, GEN.SG *laudā-tiōnis*

(like in other nouns in *-tio*, e.g. LARGITIO 'granting': NOM.SG *largī-tio*, GEN.SG *largī-tiōnis*)

➤ It is the last morph that determines the inflectional behaviour of a lexeme → The surface linear order of morphs seems to matter more than the identity of processes!

PROBLEMS FOR AN A-MORPHOUS APPROACH

- On the one hand, this state of affairs is not really surprising, and it is the usual situation in Indo-European languages with (mainly) suffixal inflection
- > On the other hand, there is no obvious reason why this should be the case
- > The converse possibilities are perfectly conceivable, and sometimes attested
 - suffixes transparent to the inflectional behavior of their base
 - \rightarrow cf. some Italian diminutives:
 - e.g. DITINO 'small finger' : SG *ditino*, PL *i ditini / le ditine / le ditina* (like in the base DITO 'finger': SG *dito*, PL *dita*)
- > Therefore, the observed asymmetry calls for an explanation
- This goes against the expectations of an a-morphous approach (cf. Anderson, 1992; Stump, 2001)
- This is compatible with approaches that use ordered lists of morphs as morphological representations (cf. Crysmann, 2002; Luis & Spencer, 2005; Crysmann & Bonami, 2016)

OUTLINE

1. Introduction

- 2. The impact of derivational information on the predictability of inflected wordforms
- 3. Predicting Inflection Classes: the role of derivational families and processes
- 4. Theoretical issues
- 5. Conclusions and future work

Conclusions

- Derivational information allows for a relevant reduction of uncertainty in the PCFP and in IC assignment
- Different aspects of the derivational history of lexemes contribute differently to inflectional predictability:
 - suffixes predict IC almost categorically, when present;
 - conversely, prefixes are not very informative on IC assignment;
 - the derivational family of a lexeme is a good predictor of its IC;
 - the Information Gain obtained by taking the derivational family into account is higher for prefixed verbs than for suffixed verbs;
 - the last morph is the most relevant piece of information in order to predict IC.
- > Linearly organized morphs play an important role in IC assignment.

Future work

- Asymmetry between prefixed and suffixed lexemes as for the kind of derivational information that proves more useful
- Is this just the outcome of historical accidents of Latin (and possibly other Indo-European languages), or a universal tendency?
 - \rightarrow To answer this question, we need to extend the investigation to other languages:
 - Non-Indo-European languages with (mainly) suffixal inflection?
 - Languages with (mainly) prefixal inflection?
 - Languages with templatic morphology?

REFERENCES (1)

Ackerman, Farrell & Blevins, James P. & Malouf, Robert. 2009. Parts and wholes: Implicative patterns in inflectional paradigms. In Blevins & Blevins (eds.). 54-82.

Anderson, Stephen R. 1992. A-morphous morphology. Cambridge: Cambridge University Press.

- Beniamine, Sacha. 2018. *Classifications flexionnelles. Étude quantitative des structures de paradigmes*. PhD Thesis. Université Sorbonne Paris Cité-Université Paris Diderot (Paris 7).
- Bonami, Olivier & Boyé, Gilles. 2006. Deriving Inflectional Irregularity. In *Proceeding of the 13th International Conference on Head-Driven Phrase Structure Grammar*. Stanford: CSLI Publications. 36-59.
- Bonami, Olivier & Boyé, Gilles. 2014. De formes en thèmes. In Villoing, Florence & Leroy, Sarah & David, Sophie (eds.), *Foisonnements morphologiques. Études en hommage à Françoise Kerleroux*. Paris: Presses Universitaires de Paris-Ouest. 17-45.
- Crysmann, Berthold. 2003. Constraint-based coanalysis. Portuguese cliticisation and morphology–syntax interaction in hpsg. Number 15 in Saarbrücken Dissertations in Computational Linguistics and Language Technology. Saarbrücken: Computational Linguistics, Saarland University and DFKI LT Lab.

Crysmann, Berthold & Bonami, Olivier. 2016. Variable morphotactics in information-based morphology. Journal of Linguistics 52(2). 311-374.

REFERENCES (2)

Guzmán Naranjo, Matías. 2019. Analogical classification in formal grammar. Berlin: Language Science Press.

- Litta, Eleonora & Passarotti, Marco & Culy, Chris. 2016. Formatio formosa est. Building a Word Formation Lexicon for Latin. In Corazza, Anna & Montemagni, Simonetta & Semeraro, Giovanni (eds.), *Proceedings of the Third Italian Conference on Computational Linguistics* (*CLiC-it 2016*). 5-6 December 2016. Napoli: Accademia University Press. 185-189.
- Luís, Ana & Spencer, Andrew. 2005. A paradigm function account of 'mesoclisis' in European Portuguese. In *Yearbook of Morphology 2004*. Dordrecht: Springer. 177-228.
- Pellegrini, Matteo. forthcoming. *Predictability in Latin inflection. An entropy-based approach.* PhD dissertation. Università di Bergamo / Università di Pavia.
- Pellegrini, Matteo & Passarotti, Marco. 2018. LatInfLexi: An Inflected Lexicon of Latin Verbs. In *Proceedings of the Fifth Italian Conference on Computational Linguistics (CLiC-it 2018)*.

Stump, Gregory T. 2001. Inflectional morphology: A theory of paradigm structure. Cambridge: Cambridge University Press.

Stump, Gregory T. & Finkel, Raphael A. 2013. *Morphological typology: From word to paradigm*. Cambridge: Cambridge University Press.

THANK YOU!

CONVERSION

Converted lexemes only:

	verbs (252)	nouns (132)
H(IC)	0.467	1.870
H(IC family)	0.062	0.372
H(IC prefix)	0.428	1.601
H(IC suffix)	0.467	1.870

	verbs (2851)	nouns (367)
H(IC)	1.94	1.979
H(IC family)	0.373	0.929
H(IC prefix)	1.875	1.855
H(IC suffix)	1.82	1.121

- The overall situation in converted lexemes is similar to the one of the whole lexicon
- What is most striking is the difference in unconditioned entropy between converted verbs and all verbs
 - \rightarrow most converted verbs belong to the 1st conjugation
 - \Rightarrow knowing that we are dealing with a converted verb, there is little uncertainty on IC