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Abstract 39 

Background: Decline in language has emerged as a new potential biomarker for the early 40 

detection of Alzheimer’s disease (AD). It remains unclear how sensitive language measures 41 

are across different tasks, language domains, and languages, and to what extent changes can be 42 

reliably detected in early stages such as Subjective Cognitive Decline (SCD) and Mild 43 

Cognitive Impairment (MCI).  44 

Methods: Using a scene construction task for speech elicitation in a new Spanish/Catalan 45 

speaking cohort (n = 119), we automatically extracted features across seven domains, three 46 

acoustic (spectral, cepstral, voice quality), one prosodic, and three from text (morpho-lexical, 47 

semantic syntactic). They were forwarded to a random forest classifier to evaluate the 48 

discriminability of participants with probable AD dementia (pAD), amnestic and non-amnestic 49 

MCI, SCD, and cognitively healthy controls. Repeated measure ANOVAs and paired-sample 50 

Wilcoxon sign-ranked test were used to assess whether and how performance differs 51 

significantly across groups and linguistic domains.  52 

Results: The performance scores of the machine learning classifier were generally satisfactorily 53 

high, with the highest scores over .9. Model performance was significantly different for 54 

linguistic domains (p < .001), and speech vs. text (p = .043), with speech features 55 

outperforming textual features, and voice quality performing best. High diagnostic 56 

classification accuracies were seen even within both cognitively healthy (controls vs. SCD) 57 

and MCI (amnestic and non-amnestic) groups.  58 

Conclusions: Speech-based machine learning is powerful in detecting cognitive decline and 59 

pAD across a range of different feature domains, though important differences exist between 60 
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these domains as well.  61 

Keywords: Machine Learning; probable Alzheimer’s Disease; Connected Speech 62 
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Introduction 64 

Although Alzheimer’s disease (AD) is one of the leading causes of death in older adults, there 65 

are no drugs in clinical practice that can cure or prevent the disease (Mossello & Ballini, 2012; 66 

World Health Organization, 2020). In this regard and the context of global aging, efficient and 67 

accessible approaches to predicting AD risk at earlier stages have been widely sought, 68 

including in Mild Cognitive Impairment (MCI) and even preclinically, in individuals with 69 

Subjective Cognitive Decline (SCD) (Rabin et al., 2017). Traditional methods for AD detection 70 

suffer from a number of limitations, including invasiveness and high cost (e.g., lumbar puncture, 71 

neuroimaging markers), or low specificity (e.g., Mini-Mental State Examination (MMSE) and 72 

Clinical Dementia Rating (CDR)). In this context, language has emerged as a new and 73 

potentially promising biomarker for detecting AD at very early stages, and developing with 74 

disease progression (Ahmed et al., 2013; Uretsky et al., 2021). It is noteworthy that people with 75 

SCD, by definition, know that they are complaining, and that such awareness may impact on 76 

speech parameters, beyond potential organic factors relating to their elevated risk of AD. 77 

Automation of speech and language analysis is rapidly advancing, and theoretical models 78 

support the integration of language and memory networks in the brain, pointing to shared 79 

underlying neural mechanisms (Hagoort, 2019; Roger et al., 2022). The integration of these 80 

methods with other signals from behavior and/or with biological markers such as blood may 81 

prove essential for advancing on inexpensive, widely available, and robust markers of early 82 

disease progression in AD. 83 

 Automated approaches from natural language processing (NLP) and machine learning 84 

have already shown strong capability in predicting AD, and even MCI (de la Fuente Garcia et 85 
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al., 2020). Paralinguistic measures extracted from speech directly, such as mathematical 86 

properties of sound waves, have also shown impressive power in identifying AD (Chen et al., 87 

2021; Haider et al., 2020; Sarawgi et al., 2020). Some studies transcribed audio into texts, either 88 

by hand or machine, and extracted features from texts, including lexical, syntactic, and N-gram 89 

features (Orimaye et al., 2017; Qiao et al., 2021; C. Thomas et al., 2005). Unlike these 90 

traditional feature engineering approaches, transfer learning based on pretrained language 91 

models, such as bidirectional encoder representations from transformers (BERT), encodes 92 

linguistic information from large corpora into vector representations or word embeddings. 93 

These have been proven powerful in language modeling and some studies have suggested to 94 

use them for AD detection due to excellent performance in a binary AD vs. control comparison 95 

based on the ADReSS dataset (Balagopalan et al., 2021; Jawahar et al., 2019). Roshanzamir et 96 

al. (2021) obtained an accuracy of 88.08% with BERT as an encoder with a logistic regression 97 

classifier, in a classification of AD vs. controls with English data from the Pitt corpus. Using 98 

Hungarian data, Gosztolya et al. (2019) achieved 74%–82% accuracy in classifying diagnostic 99 

groups (cognitively healthy, MCI, and AD) based on speech (acoustic) features, and similar 100 

results using language features.  101 

 Despite a number of promising studies, several challenges need to be addressed before 102 

speech- and language-based classification can be utilized in clinical applications. First, existing 103 

studies have mainly used the dataset from the InterSpeech challenge and its source corpus (Pitt 104 

Corpus) (Luz et al., 2020, 2021). These datasets only comprise English data from control and 105 

AD groups, so lacks data from disease stages in between, especially prodromal ones. Validation 106 

of the technically most advanced classifiers across different languages and the entire AD 107 
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continuum is necessary. Second, current studies have investigated different linguistic levels 108 

with generic linguistic variables in a bottom-top fashion (Chapin et al., 2022), yet have not 109 

assessed in detail the differential feature performance across domains. To the best of our 110 

knowledge, only some studies have compared features from both speech and text, and they 111 

have not engaged in fine-grained comparisons of domains within these modalities, especially 112 

for the textual one, which has been represented chiefly by pretrained models (Balagopalan et 113 

al., 2020; Cummins et al., 2020; Zhu et al., 2021).  114 

Finally, most available studies have elicited connected speech through a picture description, 115 

using the Cookie Theft picture (Goodglass et al., 1972). This simple but efficient task has 116 

significantly contributed to insights on AD detection through connected speech, but received 117 

some criticism including the invocation of stereotypes of family life, elicitation of overly 118 

simplified speech, and limited recollection and engagement (Berube et al., 2019; Clarke et al., 119 

2021; Sherratt & Bryan, 2019). Beyond these, the Cookie Theft picture does not challenge the 120 

creative and imaginative use of language as speech is generated while looking at the picture 121 

and objects are visually available for naming. As a hallmark of language is referencing objects 122 

that are not visually present, tasks without visual prompts may show more sensitivity than 123 

picture descriptions by challenging language production in one of its core features, namely 124 

displaced reference. In particular, scene constructions (SC) have been proposed to stimulate 125 

speech for richer information and better discrimination (Irish et al., 2015). SC requires a mental 126 

time travel to another location (e.g., a tropical island) and the imaginative representation of 127 

directly experienced events at this location. As this information has an episodic and first-128 

personal character, the task taps into a cognitive process widely reported to be impaired in AD 129 
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(Hassabis & Maguire, 2007; Schacter et al., 2017; Thakral et al., 2020).  130 

In the present study we aimed (i) to test for the generalizability of previous results of 131 

automatic classification of AD using machine learning from English to Spanish/Catalan in a 132 

new dataset; (ii) to assess the performance of the classifier across a comprehensive number of 133 

language-related featural domains, and (iii) to include different MCI and preclinical groups at 134 

risk of AD in the classification.  135 

 136 

Methods 137 

Dataset 138 

We recruited 119 participants at the Memory Clinic from Ace Alzheimer Center Barcelona. 139 

All of them were native Spanish and/or Catalan speakers. The referral center ethics committee 140 

(Hospital Clínic i Provincial de Barcelona) approved the patient recruitment. Collection 141 

protocols were under ethical standards according to the World Medical Association Declaration 142 

of Helsinki - Ethical Principles for Medical Research Involving Human Subjects. Participants 143 

were diagnosed as cognitively healthy older controls (HOC), SCD, non-amnestic MCI 144 

(naMCI), amnestic MCI (aMCI), and probable AD dementia (pAD). Briefly, SCD refers to the 145 

self-perception of cognitive problems, including memory loss, without impairment on the 146 

standardized cognitive test (Jessen et al., 2014), while MCI implies that one or more cognitive 147 

domains are impaired on the standardized cognitive test but activities of daily living are 148 

preserved, according to Petersen’s criteria (Petersen, 2004). Most SCD participants were part 149 

of the FACEHBI study (Rodriguez-Gomez et al., 2017). Supplementary Information-A (SI-A, 150 

similar below) specifies details about recruitment, diagnostic criteria, neuropsychological 151 
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assessment, and other issues. Table 1 shows the demographic and neuropsychological data of 152 

the sample (data: median (interquartile range, IQR)).  153 

 154 

Speech data elicitation and processing  155 

Speech data were elicited through a scene construction task adapted from previous studies 156 

(Hassabis et al., 2007; Irish et al., 2015). Participants were instructed to construct a scene they 157 

imagined to witness and describe it with as much detail as possible, choosing one prompt from 158 

three options: “You are lying on the beach in a tropical bay.”; “You are in a house that has been 159 

abandoned for many years.”; and “You are in a circus tent”. Most participants chose the first 160 

prompt. Speech samples were cut off after three minutes and transcribed into texts manually 161 

by a single researcher. The instructions for interview transcripts are shown in SI-B.  162 

 We extracted linguistic features from multiple domains, four directly from the audios and 163 

three from the transcripts (see Table 2). An overarching aim in feature selection was 164 

comprehensiveness, in the sense that we wanted to comparatively assess all major levels of 165 

organization of language/speech, including automatically extractable (i) acoustic spectral 166 

coefficients, (ii) acoustic cepstral coefficients, (iii) voice quality, (iv) prosodic and (v) morpho-167 

lexical features (the latter at the interface of the lexicon and morpho-syntax), (vi) manually 168 

extractable syntactic features, and finally (vii) semantic ones (insofar as we can approximate 169 

the latter with current NLP-technologies). In all of the cases (i) to (vii), there is some evidence 170 

from previous literature to assume that the features might be discriminative. 171 

In particular, we used openSMILE 3.0 to extract spectral, cepstral, voice quality, and part 172 

of prosodic features from the CompareE 2016 feature set at the level of functionals (Eyben et 173 
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al., 2010; Schuller et al., 2016). Spectral and cepstral coefficients reveal the mathematical 174 

properties of the sound waves, while voice quality features involve both phonatory and 175 

resonatory characteristics. These three features process speech as sound waves and have been 176 

widely used in previous studies, demonstrating powerful detection capacities and high 177 

robustness (Haider et al., 2020; Nasrolahzadeh et al., 2016; Thomas et al., 2020). Prosodic 178 

features reflect suprasegmental patterns in how a speaker combines individual sounds into 179 

integrated sequences with stress and intonation. Speech prosody has proved to be a sensitive 180 

measure to cognitive decline for AD even at early onset (Lofgren & Hinzen, 2022; Pistono et 181 

al., 2016) and can contribute to accurate automated classification (Themistocleous et al., 2018). 182 

As the prosodic profile in CompareE 2016 is not complete, we used Prosogram 3.0.1 to extract 183 

more prosodic information, such as pitch variation and pitch stylization (Mertens, 2004). These 184 

acoustic-prosodic measures are extracted in a fully automated form, not requiring human 185 

transcription and annotation, and they are time-efficient (less than one minute to get all features 186 

for each audio) manner, giving them special practical significance. 187 

Syntactic features were manually annotated following the method of Chapin et al. (2022), 188 

which targeted specific forms of syntactic complexity involved in referencing objects and 189 

events. This feature set, though showing a close relation to neurodegeneration in AD, is not 190 

automatable yet. Thus, we added the morpho-lexical features, which have often been used to 191 

approximate syntax for measuring language changes in AD, especially in the context of NLP  192 

(verb inflection in Fyndanis et al., 2011; ratios of different word classes in Guinn et al., 2014; 193 

verb aspect in Manouilidou et al., 2020; verb voice in Nasiri et al., 2022). Morpho-lexical 194 

features include the ratios of different word classes and the morphological variants of the 195 
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content words, which are automatically extracted by the Spanish and Catalan models from 196 

Stanza 1.3.0. Lexical and morphological features were found to be important in the progression 197 

of AD, in both contexts of group comparison (Kavé & Levy, 2003) and machine learning 198 

(Eyigoz et al., 2020). In addition, morphological variants in inflectional languages like Spanish 199 

and Catalan provide paths to observe grammar at word level (e.g. aspect and modality). 200 

Semantic changes are thought to be prominent in AD, and large computational language 201 

models capture distributional aspects of language as a proxy of meaning. A number of studies 202 

has found the application of language models on AD detection to be satisfying (Agbavor & 203 

Liang, 2022; Balagopalan et al., 2021). The robust optimized version of BERT (RoBERTa) 204 

was chosen for encoding the human transcripts. Due to the limitation on token numbers, we 205 

truncated the text and only encoded the first 510 tokens, if the text length was longer than that 206 

(Liu et al., 2019). We used Catalan BERTa (RoBERTa-base) for Catalan data 207 

(https://huggingface.co/projecte-aina/roberta-base-ca-cased-tc) and Byte-Pair Encoding 208 

RoBERTa for Spanish data (https://huggingface.co/PlanTL-GOB-ES/roberta-base-bn) 209 

(Armengol-Estapé et al., 2021; Gutiérrez-Fandiño et al., 2022). As RoBERTa models return an 210 

embedding for every token in the text, which does not fit with the purpose of assigning a single 211 

label to the text, we utilized the pooled output as a semantic representation. This output is the 212 

embedding of the initial classification token that arises from the sequence output with 213 

contextual information from all tokens of the sequence embedded in it. It is standardly used for 214 

classification tasks. The complete list of feature sets is available in SI-C. In addition, we also 215 

concatenated all the above-mentioned features into a long array as a comprehensive 216 

representation of all features together.  217 
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 218 

Experimental setup 219 

We carried out several classifications involving different comparison groups, moving from 220 

broader divisions to more fine-grained comparisons on the AD continuum: ten binary and one 221 

ternary classification tasks. The binary comparisons were, firstly, the combined preclinical 222 

group (HOC+SCD = CON) vs. the clinical groups (MCI and pAD separately), and the general 223 

pathology (PATH) group comprising MCI and pAD together. Next, we performed three further 224 

binary classifications: HOC from pAD, SCD from pAD, and HOC from SCD; and four 225 

involving the MCI group: MCI from pAD, aMCI from pAD, naMCI from pAD, and aMCI 226 

from naMCI. The ternary classification attempted to discriminate CON, MCI, and pAD. 227 

Classification experiments were completed with the scikit-learn 1.0.2.  228 

The random forests algorithm served as the classifier. This is an ensemble learning method 229 

for constructing multiple decision trees to vote for the final label. Its robustness to overfitting 230 

and noises motivated our choice (Breiman, 2001). Instead of forwarding all features to the 231 

classifier, we selected only the most informative variables to reduce computational load, lower 232 

the risk of overfitting, and remove noises from the feature set. In each experiment, we thus 233 

computed the ANOVA F-value between features in the feature set and ordered the features 234 

based on these F values. The number of selected features was automatically determined based 235 

on the classifier’s performance, with a maximum of 1500 features. The classifier was evaluated 236 

using ten-fold cross-validation with precision, recall, F1, and accuracy scores averaged across 237 

the ten folds. Considering the imbalance between the number of participants in each 238 

comparison group, we averaged the performance scores across comparison groups (i.e., the 239 
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macro scores). The macro F1 scores served as the major indicator for classifier performance as 240 

it takes data distribution into account and compensates for group imbalance.  241 

 242 

Statistics 243 

To test the power of the classifier in distinguishing between different stages of AD, a repeated 244 

measure ANOVA (RMANOVA) across different group comparisons was carried out. In 245 

addition, we conducted a RMANOVA across the different speech and language domains, to 246 

investigate how different feature sets influence the performance of the machine learning 247 

classifier. For each RMANOVA, we tested the assumption of sphericity and corrected with 248 

Greenhouse-Geisser method when the assumption was violated. Post-hoc tests were conducted 249 

in case of significant difference with Holm adjusted p-values. All statistical results are rounded 250 

to three digits, SD stands for standard deviation. Furthermore, we categorized feature sets into 251 

two overall modalities with the equal number of features, one ‘speech’ modality including the 252 

four features directly extracted from audios, and one ‘text’-modality including the three feature 253 

sets from transcripts and the concatenation of all features. We carried out a paired-sample 254 

Wilcoxon signed-rank test to check if the speech modality and textual modality are different 255 

from each other. Analyses were run with JASP 0.16.3.0.  256 

 257 

Results 258 

Classification performance scores across groups 259 

Table 3 reports the F1 scores of the random forest classifier on the ten classification tasks. To 260 

make the table more concise, we report only the averaged F1 scores performance score across 261 
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groups for classification. The complete group-wise performance matrices, including precision, 262 

recall, F1, and accuracy scores, are reported in SM-D. Figure 1 (a) shows the distribution of 263 

the F1 scores obtained by the classifier on different group comparisons using different 264 

linguistic feature sets, and (b) shows the violin plot of F1 scores for each comparison, with a 265 

line of mean F1 scores. The post-hoc comparisons for both groups and linguistic domains are 266 

shown in SM-E. As indicated by the RMANOVA, the classifier performed significantly 267 

different among different comparisons (F(10) = 14.423, p < .001, ƞ2 = .673). Measured with 268 

the average F1 scores, compared to the ternary classification (mean = .572, SD = .077), the 269 

classifier performed significantly better on all binary classifications (p < .05). For binary 270 

classifications, the classifier performed best on distinguishing between groups without (HOC 271 

and SCD) and with (MCI and pAD) cognitive impairment, specifically SCD from pAD (mean 272 

= .878, SD = .034), followed by CON (that is, the combined group without objective cognitive 273 

decline) from pAD (mean = .812, SD = .039), CON from the combined ‘pathological’ group 274 

with cognitive decline (PATH) (mean = .786, SD = .024), and CON from MCI (mean = .774, 275 

SD = .038). Performance on the three comparisons between CON and pathological groups 276 

(pAD and MCI) were similar to each other (p = 1.000). Next, the classifier distinguished HOC 277 

from pAD (mean = .758, SD = .053) and HOC from SCD (mean = .749, SD = .143). It is 278 

noteworthy that performance on SCD vs. pAD was significantly better than HOC vs. pAD (p 279 

= .005 < .05). The seventh to tenth performance scores were: aMCI vs. naMCI (mean = .747, 280 

SD = .101), naMCI vs. pAD (mean = .720, SD = .068), MCI vs. pAD (mean = .695, SD = .061), 281 

and finally aMCI vs. pAD (mean = .678, SD = .158). The performance on naMCI vs. pAD was 282 

almost the same as that of MCI vs. pAD (p = 1.000) and aMCI vs. pAD (p = 1.000). The 283 
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performance on CON vs. MCI was not significantly better than these four comparisons among 284 

MCI groups and between them and pAD (p > .05).  285 

 286 

Classification performance scores across linguistic levels and modalities 287 

Figure 1 (c) shows the violin plot of F1 scores for each feature set with a line of mean F1 scores. 288 

As indicated by the RMANOVA with Greenhouse-Geisser sphericity correction, the machine 289 

learning classifier performed significantly different among different feature sets (F(2.214) = 290 

12.423, p < .001, ƞ2 = .554). Ordered by mean F1 scores, the classifier performed best on the 291 

concatenation of all features (mean = .813, SD = .069), followed by the voice quality 292 

measurements (mean = .796, SD = .075), the spectral coefficients (mean = .791, SD = .078), 293 

the cepstral coefficients (mean = .773, SD = .087), the embeddings from RoBERTa (mean 294 

= .738, SD = .111), the prosodic features (mean = .724, SD = .097), the morpho-lexical features 295 

(mean = .659, SD = .104), and the syntactic features (mean = .648, SD = .131). Syntactic and 296 

morpho-lexical features were similar to each other (p = 1.000), and significantly worse than all 297 

other feature sets (p < .05) except prosodic features (p = .058, p = .158, respectively). Prosodic 298 

features performed significantly worse only relative to the concatenation of all features (p 299 

= .013, p < .05). Post-hoc comparisons among other pairs of feature sets were all insignificant 300 

(p > .05). After grouping linguistic levels into two modalities, speech and text, speech-based 301 

features (mean = .771, median = .776, SD = .087) discriminated groups significantly better 302 

than text-based ones (mean = .714, median = .736, SD = .123, z = 2.019, p = .043 < .05). Figure 303 

1 (d) shows the violin plot of F1-scores for each modality with a line of mean F1 scores.  304 

 305 
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Discussion  306 

This study aimed to (i) test for the generalizability of previous results of automatic 307 

classification of AD from English to Spanish/Catalan in a new dataset; (ii) assess the 308 

performance of the classifier across different language-related featural domains, and (iii) 309 

include different MCI as well as preclinical groups at risk of AD in the classification. Our 310 

results confirm that similar performance as in previous studies based on Hungarian and English 311 

data can be generalized on our new Spanish/Catalan data (Gosztolya et al., 2019; Haulcy & 312 

Glass, 2021). For all binary comparisons we made, most of the F1 scores are around or higher 313 

than .7. For some specific separations we even achieved more impressive results, such as the 314 

F1 score of .912 in separating HOC from pAD based on spectral coefficients. For ternary 315 

classification, though the performance is worse, between .447-.662 by F1 score, they were 316 

higher than the chance level of .330, with the highest scores doubling the latter. These results 317 

suggest that speech analysis can be a potentially powerful and generalizable approach for 318 

automated pAD detection and risk for it.  319 

As for performance in different feature domains, accuracies were generally satisfactorily 320 

high across domains, with the exception of morpho-lexical features and syntactic features. The 321 

former finding may be expected, as declarative memory-related cognitive impairment in AD 322 

may not result in changes in morphology, associated with procedural memory. More surprising 323 

is the finding on syntactic features, in light of the study of Chapin et al. (2022), where a number 324 

of hand-selected syntactic measures related to hierarchical syntactic complexity discriminated 325 

between controls, MCI and AD groups. One possibility is that significant changes in syntactic 326 

impairment occur in MCI, as the F1 scores achieved on distinguishing controls from MCIs and 327 



 

17 

pAD were all around or above .7 (.688-.860), but less than .6 when comparing within groups 328 

with or without (objective) cognitive impairment (.460-.589). Decline in syntactic complexity 329 

also seems to be a late effect in the pathophysiological process, as compared to speech domains. 330 

Thus, in all three textual domains investigated, RoBERTa performed significantly better than 331 

syntactic and morpho-lexical features, and comparably to speech domains. Unlike manually 332 

designed feature sets including our syntactic one, RoBERTa is an integrated linguistic 333 

representation wrapping up what the model learned from the pre-trained corpus and current 334 

contexts into the embeddings. This highlights the importance of semantic changes in AD, as 335 

RoBERTa originates from distributional semantics-based word embeddings. Nonetheless, 336 

current studies have shown that these BERT-based models also capture lexical, syntactic, and 337 

conversational information in addition to semantic information (Kumar et al., 2021; Staliūnaitė 338 

& Iacobacci, 2020). Syntactic changes at the phrasal level could be important in AD, even for 339 

the early stages. Again, morphology and phrasal syntactic complexity could be more a matter 340 

of procedural memory, while the syntactic variables in our syntactic feature set could be argued 341 

to capture more declarative aspects of language use, such as specific forms of complexity 342 

needed to express episodic semantic information.  343 

Another unexpected finding was that performance in speech domains was significantly 344 

better than in textual domains. This raises the thought-provoking question whether we even 345 

need transcripts and textual analysis, given the impressive performances of acoustic features 346 

and the high costs of the transcription task. Although fusing speech and text domains gives 347 

slight increases (less than .1) in performance scores, it is questionable whether such small 348 

increases balance the cost of transcription. The voice quality measures and spectral and cepstral 349 
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coefficients performed the best and similar to each other. Although previous studies 350 

hypothesized voice quality changes as an ex-post effect from the physiological impairment of 351 

the fine control and the slowing down of vocal organs due to MCI and AD, the F1 scores of .742 352 

on separating HOC and SCD and .814 on separating aMCI and naMCI suggest the roles of 353 

cognitive decline and memory loss in the changes of voice quality (Themistocleous et al., 2020). 354 

Paralinguistic features have been verified as performative in AD classification for multiple 355 

languages (Lindsay et al., 2021) and even across languages (Martinez de Lizarduy et al., 2017), 356 

which has been confirmed in our study. Similar to the voice quality measures, some studies 357 

also related paralinguistic features to voicing handicaps, so treated these changes as a side 358 

effect of AD (Awan et al., 2014). However, we found that the spectral and cepstral coefficients 359 

were more discriminative when separating HOC and SCD, followed by separations between 360 

individuals with and without cognitive impairment, including the aMCI vs naMCI, and finally 361 

between MCI and pAD. A more reasonable interpretation could be that paralinguistic features 362 

represent variance from other factors such as affective, apathy and executive functions 363 

(Lindsay et al., 2021).  364 

As for prosody, when ranking the performance of prosody and syntax on different 365 

classification tasks from highest to lowest, similar results were found between them, with the 366 

comparisons between groups with and without cognitive impairment at the top and 367 

comparisons within these two general groups at the bottom. As prosody and syntax respectively 368 

represent the unification of sounds and words, we may conclude that organization abilities in 369 

these two domains decline greatly from cognitively healthy to cognitive impairment, but slowly 370 

progress within these two general phases.  371 
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Our final aim was to test the extendibility of previous classification results to further 372 

groups on the AD spectrum, specifically SCD and different MCI groups. Remarkably, very 373 

high accuracies were obtained when classifying cognitively healthy individuals with and 374 

without cognitive complaints (HOC and SCD), and classifying each from pAD, specifically 375 

when using the purely speech-based feature domains – spectral and cepstral coefficients. To 376 

our knowledge, this is the first report of an automatized differentiation between these 377 

preclinical groups, which is particularly noteworthy insofar as it does not depend on 378 

transcription. Future work following people with SCD over time could investigate this issue, 379 

by comparing the speech of converting vs. non-converting SCDs after an interval. Equally 380 

striking in our results is the differentiability of the amnestic and non-amnestic MCI groups, 381 

again based on spectral and cepstral features. Despite the high differentiability, although aMCI 382 

and naMCI are not that similar between themselves, they are similarly different from AD, 383 

unlike SCD and HOC. Furthermore, similar patterns were observed in groups, linguistic 384 

domains, and linguistic modalities, when we applied the gradient boosting algorithm as the 385 

classifier, another ensemble learning algorithm where the decision trees are not independent 386 

but will correct each other. Results from this algorithm and statistical comparisons can be found 387 

in SI-F. These similar patterns from a different algorithm indicate robustness in our 388 

classification results. 389 

This study has several limitations. First, the dataset is relatively small from a 390 

computational perspective, so we can neither train the model with large data nor use state-of-391 

the-art deep learning techniques. Although we managed to validate the result by using cross-392 

validation, this still limits the performance of the classifier. Secondly, it is impossible to capture 393 
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the full picture in every linguistic domain, though we used the available and already verified 394 

features to ensure representativeness. Finally, the performance on ternary classification is not 395 

high, likely due to the heterogeneity in groups and the size of the dataset.  396 

In conclusion, our study shows that using machine learning based on speech can be a 397 

potentially powerful tool for detecting cognitive impairment and its gradation based on pAD 398 

pathology and that different linguistic domains play significantly different roles in this 399 

procedure. With clinical applications in mind, we underline both the high performance of 400 

speech-based measures as compared to text-based ones, and the discriminability even of 401 

objectively unimpaired healthy older adults with and without SCD, and of groups with 402 

amnestic and non-amnestic MCI. Combined with other behavioral markers or biological ones 403 

such as blood or retinal appearances, speech analysis may well prove to provide essential help 404 

for establishing early and robust diagnostic markers of AD, which are inexpensive and widely 405 

available. 406 

 407 
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Tables 672 

Table 1: Participant demographics† 673 

 HOC SCD naMCI aMCI pAD Test p value 

Number  18 31 23 16 31 / / 

Age  66 (8) 69 (10) 75 (8) 78 (7) 81 (9) KW test < .001*** 

Age Range 58 - 89 56 - 85 52 - 88 66 - 89 60 - 93 / / 

Sex  61.1 25.8 39.1 37.5 45.2 χ2 .177 

Education  7 (4) 7 (3) 5 (3) 5 (3) 5 (2) KW test .000*** 

Language  33.3 22.6 4.4 12.5 12.9 χ2 (Fisher)  .126 

MMSE score 
29.0 

(1.0) 

29.0 

(2.0) 

27.0 

(3.0) 

28.0 

(2.1) 

23.0 

(4.5) 
KW test < .001*** 

CDR score 0 0 .5 .5 1 or 2 / / 

Note: HOC: healthy older control; SCD: subjective cognitive decline; naMCI: non-amnestic 674 

mild cognitive impairment; aMCI: amnestic mild cognitive impairment; pAD: probable 675 

Alzheimer’s disease dementia; KW test: Kruskal-Wallis test; MMSE: Mini-Mental State 676 

Examination; CDR: Clinical Dementia Rating.  677 

*p < .05, **p < .01, and *** p < .001.  678 

†: Age in years. Gender is represented by the proportion of females. Education in education 679 

level. Language is represented by the proportion of people answering questions in Catalan. 680 

Fisher’s exact test is applied for language as several expected frequency less than 5.  681 

  682 
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Table 2: Linguistic features extracted 683 

Levels Description  Num Tools 

Spectral Auditory spectrum and the relative spectral 

transform 

 2800 openSMILE 

Cepstral Mel-Frequency cepstral coefficients 0–14.  1400 openSMILE 

Voice quality Jitter, shimmer, loudness, and log harmony-

noise-ratio 

 2012 openSMILE 

Prosodic Include frequency, speech rate, pitch 

variation, pitch stylization etc.  

 199 openSMILE& 

Prosogram 

Morpho-

lexical 

Ratios of different word classes and the 

morphological variants, e.g. masculine nouns 

 154 Stanza 

Syntactic Ratios of syntactic features selected from 

Chapin et al.(Chapin et al., 2022), e.g. verb 

modality 

 21 Manual 

Semantic Pooled output of RoBERTa models  768† RoBERTa 

†: number of dimensions of the word embeddings  684 
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Table 3: Classifier performance across different comparisons and feature sets 685 

Comparison spectral cepstral prosodic voice quality syntactic morpho-lexical RoBERTa all  

CON/PATH .789 .776 .805* .804* .802* .738 .768 .806* 

CON/pAD .825* .833* .819* .853** .771 .735 .826* .834* 

CON/MCI .801* .769 .798 .799 .743 .700 .771 .814* 

HOC/pAD .765 .775 .757 .800* .688 .676 .832* .771 

HOC/SCD .912*** .908*** .702 .742 .534 .649 .649 .900*** 

HOC/pAD .765 .775 .757 .800* .688 .676 .832* .771 

SCD/pAD .878** .880** .854** .903*** .860** .819* .928*** .898** 

MCI/pAD .732 .724 .682 .753 .589 .635 .675 .768 

aMCI/pAD .719 .724 .539 .866** .460 .508 .737 .869** 

naMCI/ pAD .734 .764 .718 .801* .581 .690 .696 .776 

aMCI/ naMCI .881** .776 .696 .814* .581 .656 .730 .847* 
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CON/MCI/pAD .662 .579 .591 .618 .516 .447 .505 .660 

Note: *** F1 score > = .9 for very good, ** F1 score > = .85 for good, * F1 score > = .8 for not bad 686 

 687 
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Figures 688 

Figure 1. (a) Scatter plot of F1-scores across different feature sets and classification tasks; (b) 689 

Means, standard deviations and distributions of the same F1-scores across classification tasks 690 

with the mean line; (c) F1-scores across different feature sets with the mean line; (d) F1-scores 691 

between different modalities (speech vs. text) with the mean line.  692 

  693 
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Learning Outcomes 694 

 Machine learning based on automatically extracted language features detected cognitive 695 

decline from early stages of the AD continuum in a new Spanish-Catalan dataset.  696 

 Different speech and language domains showed differential discrimination performance 697 

between groups, with features extracted directly from speech performing better than those 698 

from the text.  699 

 Before the onset of objective cognitive impairment, speech and language from older adults 700 

with Subjective Cognitive Decline (SCD) showed speech and language differences from 701 

controls without SCD, indicating potential heterogeneity in these non-clinical groups.  702 

 703 
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