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Abstract

It is shown that the notion of the partition of a set can be used to describe
in a uniform way the meaning of the expression the same, in its basic uses in
transitive and ditransitive sentences. Some formal properties of the function
denoted by the same, which follow from such a description are indicated. These
properties indicate similarities and differences between functions denoted by the
same and generalised quantifiers

1 Introduction

The extensive study of natural language quantifiers with strong application of formal
tools in recent years has led to empirical widening of research in that domain. Con-
sequently the semantics and logical properties of various ”logically oriented” lexical
items, which technically do not denote quantifiers, have also been studied. Among
formatives studied on such occasions are the same and different. These items are
of considerable logical interest not only because they are related to quantifiers but
because their semantics immediately goes beyond standard first order analysis. In
addition, they give rise to specific less-known inferential patterns.

In this paper I will use the notion of a set partition and some notions from (ex-
tended) generalised quantifier theory, to provide in particular a more complete se-
mantic description of sentences with the same (possibly modified) in some of their
basic uses. The semantic description of such constructions is not, however, the main
purpose of this paper. I am more interested in the description of the type of functions
denoted by the same CN and in their formal properties. Thus I will indicate some
formal properties of functions denoted by these items, properties which will specify
what these functions have in common with (generalised) quantifiers in particular. In
addition, I will indicate some inference patterns based on them.

The items that will be considered in this paper have many uses which have been
studied in numerous publications (see Barker 2007 for an overview of an important
part of the relevant literature on the subject). My main objection to most descriptions
of sentences with the same concerns their lack of generality: they do not account for
the fact that subject NPs of such sentences are in general not constrained, except for
plurality. Thus subject NP s of sentences with the same CN in the object position
can denote not only (principal) filters but quantifiers of various other types including
those formed with numerals, proportional quantifiers or even quantifiers taking many
set arguments. For instance the following NPs can easily occur in subject position in
sentences with the same: ten teachers, no student, except Leo and Lea, most students,
including Leo and Lea, at least seven monks, most but less than seventeen female
students, more philosophers than logicians, between seven and eleven teachers, etc.

∗Thanks to reviewers for Journal of Logic, Language and Information for various remarks on a
previous version of this paper. Thanks to Ross Charnock for the usual help with English.
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Given that fact that the same has many uses and can be categorially characterised
in multiple ways, it is useful to indicate the uses of the same that will not be studied
here.

First, the expression the same has been studied in the context of binary nom-
inal determiners which denote type 〈1, 1, 1〉 quantifiers, that is functions taking 2
sets as arguments and giving a type 〈1〉 quantifier as results (Beghelli 1994, Keenan
and Moss 1985, Zuber 2009). The following examples illustrate such a use of the same:

(1) The same students came early as left late.

Second, we will not study the same occurring in comparative constructions like (2):

(2) Leo read the same book as most students.

Observe that strictly speaking in (2) we have not the same but rather the same
as. This use of the same as has been partially studied in Zuber (2011).

Finally, I will be interested in the sentence internal reading of this expression and
not in its sentence external reading. Roughly, this means that the ”antecedent” of the
same CN has to be in the same sentence. Consider the sentences in (3) in comparison
with those in (4):

(3a) Leo and Lea read the same books.
(3b) Leo read the same books as Lea and Lea read the same books as Leo.
(4a) Dan read Exciting Humour and Hot Logic. Leo and Lea read the same books.
(4b) Dan read Exciting Humour and Hot Logic. Leo read the same books.

The sentence external reading of the same book is most naturally obtained in (4a)
and (4b) since the same book somehow is related to an element not present in the sec-
ond sentence in the sequence of two sentences. In (3a), even though such an external
reading is possible, we get easily sentence internal reading where (3a) is equivalent to
(3b). Furthermore, in sentence external reading the ”sameness” is only partial. For
instance (4a) does not entail that all the books that Leo and Lea read are the same.
This is not the case in (3a) since (5) sounds contradictory:

(5) Leo and Lea read the same books and in addition Leo read Hot logic

Observe also that sentence external reading, in opposition to internal reading, is
possible with singular subjects and with intransitive sentences:

(6) Leo read Exciting Humour. Lea read the same book.
(7) Two students danced. The same students sang (as well).

Finally, it seems that external the same is ”redundant” in the sense that it can be
replaced by ”logically simpler” items. For instance (4a) and (7) are equivalent to (8)
and (9) respectively:

(8) Dan read Exciting Humour and Hot Logic. Leo and Lea read them too.
(9) Two students danced. They also sang.

The second point concerning the data to be considered has, roughly speaking, to do
with what philosophers of language would call the type-token distinction. Obviously
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the same involves some kind of identity between objects and thus when interpreting
sentences with the same a question arises as to just how similar two objects have to be
in order to count as the same. In (3a) for instance both identities, type identity and
token identity, are possible: Leo and Lea could have read the same token of the book
or the same ”type”, roughly speaking, including even the possibility of being just a
translation of some book. Observe that this example shows that type-token distinction
is not really appropriate, and probably, as shown in Lasersohn (2000) the degree of
similarity matters. I will ignore possible complications due to this distinction.

Concerning the syntax of the sentences to be analysed I will assume a simple
categorial grammar with mostly classical major categories such as NP - a noun phrase,
CN - a common noun, a V P a verb phrase and TV P - a transitive verb phrase. CN
are supposed to denote sets, subsets of a given universe, TV P denote binary relations
and DTV P - ditransitive verb phrases, denote ternary relations over this universe. In
this framework the expressions the same and the same number of will be considered as
(generalised) determiners: they take a CN as arguments and give a nominal argument
of TV Ps or of DTV Ps as result.

To recapitulate the above remarks we will consider sentences having one of the
following forms:

(10a) NP TV P THE SAME CN
(10b) THE SAME TV P NP
(10c) NP1 DTV P NP2 Prep THE SAME CN
(10d) NP DTV P THE SAME CN1 Prep THE SAME CN2

(10e) NP TV P1 AND TV P2 THE SAME CN

As indicated in (10d) we will also analyse sentences in which two THE SAME
CN occur: one in the direct object position and one in the indirect object position
as illustrated in (11):

(11) Leo and Lea gave the same books to the same children.

In addition we will analyse in similar sentences a modified the same, that is the
determiner the same number of. However, only sentences of the form (10a) and (10e)
will be analysed in some details. The analysis of sentences of the forms (10b), (10c)
and (10d) will essentially use the analysis of sentences of the form (10a).

As the forms in (10) show we are interested in the same CN playing the role
of verbal arguments as ”ordinary” NPs. It is well-known, however, that there are
also non-verbal ”transitive expressions” which can take NPs as arguments and form
(generalised) predicatives. For instance, there are transitive CNs such as grand-parents
of and transitive adjectival phrases such as jealous of, which form ”simple” CNs or
”simple” adjectival phrases with NPs. Interestingly, the same CN can also occur as
an argument in such constructions since we have grand-parents of the same students
and jealous of the same composers. Probably other expressions with embedded the
same CN such as articles with the same errors or books with the same number of
chapters are of the same type. Although these constructions will not be analysed
here, it should be stressed that their semantics is likely to involve binary relations.

What is the categorial status of the same and the type of function it denotes? We
know that sentences with the same, of the form given in (10a) do not take proper
nouns as subjects (under the sentence internal readings) and thus the type of objects
denoted by the subject NP cannot be e, the type corresponding to individuals. We
can suppose that it is of the raised type 〈〈e, t〉, t〉, which, ignoring directionality,
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corresponds to the category S/(S/NP ). Since the same applied to a common noun
forms a verbal argument playing the role of direct object the same (CN) applies to
a transitive verb to form a V P . We will consider, that semantically this V P denotes
a set of type 〈1〉 quantifiers. Thus, in order to avoid the type mismatch the verb
phrase must be raised to become of the category S/(S/(S/NP )). This move accounts
naturally for the fact that almost any NP can occur as subject NP in ”transitive”
sentences with the same (CN) in the object position.

A semantic observation going in this direction concerns the behaviour of conjoined
NP s in the subject position. Consider (12) and (13):

(12a) Leo and Lea read the same books.
(12b) Bill and Sue read the same books.
(13) Leo, Lea, Bill and Sue read the same books.

Clearly (12a) in conjunction with (12b) does not entail (13). This means that the
functions denoted by the subject NPs in (12a) and (12b) do not apply to the predicate
denoted by the complex VPs in these sentences and thus the conjunction and is
not understood pointwise. Hence, to avoid the type mismatch and get the right
interpretations we will consider that in the basic case of sentences like (3a) the verbal
argument the same books denote higher order functions that is functions taking a
binary relation as argument and giving a set of quantifiers as output. This analysis
will be assumed in what follows.

2 Formal Preliminaries

Let me start by recalling some basic notions from the ”classical” generalised quantifier
theory and some less classical extensions and generalisations of them which will be
used in what follows. As we will see these extensions have a basically linguistic
justification.

Given a fixed universe E, (where |E| ≥ 2), a type n quantifier is a function from
n-ary relations to truth values. A type 〈1〉 quantifier is a function from sets (sub-sets
of E) to truth values, and thus it is a set of sub-sets of E. A type 〈1, 1〉 quantifier
is a function from sets to type 〈1〉 quantifiers. In natural language semantics type
〈1〉 quantifiers are denotations of NP s and a type 〈1, 1〉 quantifiers are denotations
of (unary nominal) determiners, that is expressions like every, no, most, five, etc.
Since both types of quantifiers form Boolean algebras they have Boolean complements
(negations): If Q is a quantifier (of one of the above indicated types) then ¬Q is its
Boolean complement. Both type of quantifiers have also post-negations: if Q is a type
〈1〉 quantifier then its post-negation Q¬ is defined as: Q¬ = {X : X ′ ∈ Q}, where
X ′ is the Boolean complement of X. If Q is a type 〈1, 1〉 quantifier then Q¬ is that
type 〈1, 1〉 quantifier which for every set X associates to Q(X) the post-complement
of Q(X): Q¬(X) = Q(X)¬. These two types of negation allow us to define the dual
quantifier Qd of a given quantifier Q: Qd = ¬(Q¬) = (¬Q)¬. For instance EV ERY
and SOME (considered as type 〈1, 1〉) are dual of each other. Similarly, the quantifier
EV ERY -BUT -AT -MOST n is the dual of AT -LEAST n.

A type 〈1〉 quantifier is atomic iff it contains only one element. In our notation
QA denotes the atomic quantifier which has just A as its unique element.

As the examples presented above show, sentences with the same CN necessitate
plural subjects and thus we need the notion of a plural type 〈1〉 quantifier, denotation
of a plural NP . A fully satisfactory definition of the notion of a plural quantifier
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may appear complicated. For our purposes we will use the following definition: the
quantifier Q is called plural, in symbols Q ∈ PLR, iff Q ⊆ 2(E) or ¬Q ⊆ 2(E), where
2(E) = {X : X ⊆ E ∧ |X| ≥ 2}.

A type 〈1〉 quantifier is monotone increasing, Q ∈ MON , iff Q(Y1) ⊆ Q(Y2)
whenever Y1 ⊆ Y2. Some (type 〈1〉) quantifiers are filters generated by a set, or
principal filters: Ft(A) is a filter generated by A iff Ft(A) = {X : A ⊆ X}.

The above notions belong to the ”classical” generalised quantifier theory. This
means that basically type 〈1〉 quantifiers are functions from sets to truth values.
Linguistically such functions interpret noun NPs in (grammatical) subject positions.
However, NP s can occur not only in subject position and thus their domain of ap-
plications should be extended so that they also apply n-ary relations. Here we will
consider only a particular case of extension to binary and ternary relations (supposed
to be denotations of TV P s and of DTV P s respectively).

A type 〈1〉 quantifier Q can apply in two ways to binary relations: as a ”subject-
function”, called its nominative extension, Qnom and as a ”direct object function”
called the accusative extension, Qacc. They are formally defined in the following way.
Let Q be a type 〈1〉 quantifier, R a binary relation and a ∈ E. Then aR = {x :
〈a, x〉 ∈ R} and Ra = {x : 〈x, a〉 ∈ R}. Given this notation Qnom and Qacc are
defined as follows:

D1: Qnom(R) = {x : Q(Rx) = 1}
D2: Qacc(R) = {x : Q(xR) = 1}.

If it is clear that R is a binary relation Qnom(R) will be noted Q(R) from now on.
Case extensions of a type 〈1〉 quantifier can be used to make clear the notions

of subject and object wide scope readings. Thus given sentence (14) in which the
(subject) NP1 denotes the quantifier Q1 and the (object) NP2 denotes Q2 and TV P
denotes the binary relation R, in (15a) we have the subject wide scope reading and
in (15b) the object wide scope reading of (14):

(14) NP1 TV P NP2

(15a) Q1 ((Q2)acc(R))
(15b) Q2((Q1)nom(R))

As we will see some readings of the same CN are related to wide scope readings.
Definitions D1 and D2 indicate how the domain of a type 〈1〉 quantifier can be

extended to include binary relations. The extension defined in D2 shows how to cal-
culate the denotation of the V P obtained by the composition of a TV P with a NP
playing the role of the direct object (interpreted with the narrow scope). Since we
will also deal with DTV P s we also need to extend the domain of type 〈1〉 quantifiers
so that they apply to ternary relations. To do this we need the following definitions:

D3: Let S be a ternary relation. Then:
(i) 〈a1, a2〉S = {x : 〈a1, a2, x〉 ∈ S}
(ii) 〈a1, a3〉S = {x : 〈a1, x, a3〉 ∈ S}
(iii)〈a2, a3〉S = {x : 〈x, a2, a3〉 ∈ S}
(iv) a1S = {〈y, z〉 : 〈a1, y, z〉 ∈ S}

The application of a type 〈1〉 quantifier to a ternary relation can now be defined
as follows:
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D4: Let S be a ternary relation and Q a type 〈1〉 quantifier. Then:

(i) Q3c(S) = {〈x1, x2〉 : Q(〈x1, x2〉S) = 1}
(ii) Q2c(S) = {〈x1, x3〉 : Q(〈x1, x3〉S) = 1}
(ii) Q1c(S) = {〈x2, x3〉 : Q(〈x2, x3〉S) = 1}

The definitions in D4 indicate how a type 〈1〉 quantifier reduces a ternary relation
to a binary one. Such a reduction happens when, syntactically speaking, an NP
becomes an argument of a DTV P . The position of the argument is indicated by the
indices of coordinates. For instance Q3c corresponds to the situation in which the
argument NP is the third argument of the DTV P .

We will consider binary and ternary relations and functions over the finite universe
E. If a function takes only a binary relation as argument, its type is noted 〈2 : τ〉,
where τ is the type of the output; if a function takes a set and a binary relation as
arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the output of the function is
a set of individuals and thus the type of the function is 〈2 : 1〉. For instance the
function SELF , where SELF (R) = {x : 〈x, x〉 ∈ R}, is of this type. Case extensions
exemplify this type of function as well.

The case we will basically consider here is when τ corresponds to a set of type 〈1〉
quantifiers and thus τ equals, in Montagovian notation, 〈〈〈e, t〉t〉t〉. In short, the type
of such functions will be noted either 〈2 : 〈1〉〉 (functions from binary relations to sets
of type 〈1〉 quantifiers)) or 〈1, 2 : 〈1〉〉 (functions from sets and binary relations to sets
of type 〈1〉 quantifiers). Similarly, the type of functions mapping ternary relations to
binary relations is noted 〈3 : 2〉 and the type 〈1, 3 : 2〉 corresponds to functions having
sets and ternary relations as arguments and binary relations as results. Definition
D4 provides an example of such functions. Finally, the type of functions mapping
ternary relations to sets of binary relations is noted 〈3 : 〈2〉〉 and the type of functions
mapping sets and ternary relations to sets of binary relations will be noted 〈1, 3 : 〈2〉〉.
Such functions will be called higher order functions (on relations). As we will see, the
same (CN) denotes a higher order function.

If R is a binary relation and A a set then RA denotes a sub-relation of R whose
range is restricted by A that is RA = {〈x, y〉 : 〈x, y〉 ∈ R ∧ y ∈ A}. Similarly if S is
a ternary relation SA,B denotes a sub-relation of S whose second elements of triples
that belong to S are restricted to A, and third elements of these triples are restricted
to B, that is SA,B = {〈x, y, z〉 : 〈x, y, z〉 ∈ S ∧ y ∈ A ∧ z ∈ B}.

Any mapping f of a given set A (on another set) establishes an equivalence rela-
tion ef on A defined as 〈x, y〉 ∈ ef iff f(x) = f(y). Let R be a binary relation. It gives
rise to the following two mappings of E: (1) f1(x) = xR and (2) f2(x) = |xR|. This
means that with any binary relation R one can associate the following two equivalence
relations:

D5 (i) eR = {〈x, y〉 : xR = yR}
(ii) eR,n = {〈x, y〉 : |xR| = |yR|}

Similarly, with any ternary relation S we can associate the following equivalence
relations:

D6 (i) e2cS = {〈〈a1, a3〉, 〈b1, b3〉〉 : 〈a1, a3〉S = 〈b1, b3〉S}
(ii) e2cS,n = {〈〈a1, a3〉, 〈b1, b3〉〉 : |〈a1, a3〉S| = |〈b1, b3〉S}|
(iii) eS = {〈a, b〉 : aS = bS}
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We will consider various partitions of a set corresponding to the above equivalence
relations. If R is a binary relation then ΠR(X) is the partition of the set X defined
by the relation eR and ΠR,n(X) is the partition of X defined by the relation eR,n.
Similarly, if S is a ternary relation then Π2cS(X) is the partition of the set X of
ordered pairs defiined by the relation e2cS and Π2cS,n(X) is the partion of the set X
of ordered pairs defined by the relation e2cS,n. Finally D6 (iii) defines an equivalence
relation induced by the ternary relation S to which corresponds the partition ΠS(X)
induced by the relation S.

Since a partition (of a set of individuals) is a set of sets (of individuals) one can
consider that D5 associates with any binary relation R a set of unary relations and
D6 associates with any ternary relation S a set of binary relations - a partition of
ordered pairs.

Partitions (of the same set) can be partially ordered by the refinement relation:
the partition Π1(X) refines the partition Π2(X) iff for any block B1 ∈ Π1(X) there
exists a block B2 ∈ Π2(X) such that B1 ⊆ B2. It is easy to see that ΠR(X) refines
ΠR,n(X). Moreover we also obtain a refinement relation on some of the above parti-
tions, if we consider relations RC and RD with C and D ordered by inclusion. More
specifically we have:

Proposition 1: Let C ⊆ D. Then for any X 6= ∅, any R 6= ∅, any S 6= ∅: ΠRD
(X)

refines ΠRC
(X)

Given that aR = bR iff aR′ = bR′, aR = aS iff aR′ = aS′ and |aR| = |aS| iff
|aR′| = |aS′|, for R and S binary, we also have:

Proposition 2: (i) ΠR(X) = ΠR′(X)
(ii) ΠR,n(X) = ΠR′,n(X)

Quantifiers found in natural language obey various constraints which can be
used to distinguish various classes of quantifiers (conservative, intersective, cardi-
nal, etc., see Keenan and Westerst̊ahl 1997). For instance, a type 〈1, 1〉 quanti-
fier D is conservative iff D(X,Y ) = D(X,X ∩ Y ). Similarly, D is intersective iff
D(X,Y ) = D(X ∩Y,X ∩Y ) and D is co-intersective iff D(X,Y ) = F (X−Y,X ′∪Y ).
Intersective and co-intersective quantifiers form atomic Boolean algebras INT and
CO-INT respectively. Their atoms are determined by sets. Thus the type 〈1, 1〉
quantifiers DA (for A ⊆ E) is an atom of INT iff DA(X,Y ) = 1 iff X ∩ Y = A.
Similarly, DA is an atom of CO-INT iff DA(X,Y ) = 1 iff X ∩ Y ′ = A. For instance
the determiner no...except Leo and Lea denotes the atom of INT determined by the
set containing exactly Leo and Lea.

The algebra INT has a sub-algebra CARD and the algebra CO-INT has a sub-
algebra CO-CARD. By definition (Keenan and Westerst̊ahl 1997) D ∈ CARD
(resp. D ∈ CO-CARD) iff D(X1, Y1) = D(X2, Y2) whenever |X1 ∩ Y1| = |X2 ∩ Y2|
(resp. |X1 ∩ Y ′1 | = |X2 ∩ Y ′2 |. Both classes of quantifiers form atomic Boolean al-
gebras whose atoms are determined by cardinals. Functions EXACTn such that
EXACTn(X,Y ) = 1 iff |X ∩ Y | = n are atoms of CARD and functions EXACTn
such that EXACTn(X,Y ) = 1 iff |X ∩Y ′| = n are atoms of CO-CARD (for n ∈ N).
For instance the determiner every... but ten denotes the atom of CO-CARD deter-
mined by the cardinal 10.

All these properties of quantifiers can be generalised so that they apply to sim-
ple and higher order functions. The following definitions will be used (cf. Zuber 2010):
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D7: A function F of type 〈1, 2 : τ〉 is conservative iff F (X,R) = F (X, (E ×X) ∩R)
D8: A type 〈1, 2 : τ〉 function F is intersective (resp. co-intersective) iff F (X1, R1) =
F (X2, R2) whenever (E × X1) ∩ R1 = (E × X2) ∩ R2 (resp. (E × X1) ∩ R′1 =
(E ×X2) ∩R′2).
D9: A type 〈1, 2 : τ〉 function is cardinal (resp. co-cardinal) iff F (X1, R1) = F (X2, R2)
whenever ∀y(|X1 ∩ yR1| = |X2 ∩ yR2|) (resp. ∀y(|X1 ∩ yR′1| = |X2 ∩ yR′2|)).

One can notice that cardinal functions are intersective and intersective functions
are conservative. Similarly, co-cardinal functions are co-intersective which, them-
selves, are conservative.

We will also analyse sentences with the same in which two transitive verbs oc-
cur. In this case functions taking two relational arguments (that is functions of type
〈1, 22 : 〈1〉〉 are involved. For them we can also define (generalised) conservativity,
intersectivity, etc. Thus we have (for R1, R2, S1, S2 binary):

D10: A type 〈1, 2, 2 : τ〉 function F is conservative iff if (E×X)∩R1 = (E×X)∩R2

and (E ×X) ∩ S1 = (E ×X) ∩ S2 then F (X,R1, S1) = F (X,R2, S2)
D11: A type 〈1, 2, 2 : τ〉 function F is intersective iff if (E×X1)∩R1 = (E×X2)∩R2

and (E ×X1) ∩ S1 = (E ×X2) ∩ S2 then F (X1, R1, S1) = F (X2, R2, S2)
D12: A type 〈1, 2 : τ〉 function F is cardinal (resp. co-cardinal) iff F (X1, R1, S1) =
F (X2, R2, S2) whenever ∀y(|X1∩yR1| = |X2∩yR2|) and ∀y(|X1∩yS1| = |X2∩yS2|)
(resp. ∀y(|X1 ∩ yR′1| = |X2 ∩ yR′2|) and ∀y(|X1 ∩ yS′1| = |X2 ∩ yS′2|)).

As in the case for type 〈1, 1〉 quantifiers it is possible to give other, equivalent,
definitions of conservativity, intersectivity and co-intersectivity of type 〈1, 2 : τ〉 func-
tions. I will use the definition of intersectivity given by:

Proposition 3: A type 〈1, 2 : τ〉 function F is intersective (resp. co-intersective) iff
F (X,R) = F (E, (E ×X) ∩R) (resp. F (X,R) = F (E, (E ×X ′) ∪R)) .
Proposition 4: A type 〈1, 22 : τ〉 function F is intersective iff F (X,R, S) = F (E, (E×
X) ∩R, (E ×X) ∩ S).

Observe that most of the above definitions do not depend on the type τ of the
result of the application of the function. So obviously they can be used with higher
order functions.

3 Application of partitions

Before showing how the notion of a set partition applies to the analysis of sentences
with the same some remarks about readings of such sentences are in order.

I will be essentially interested in the logical, that is not involving existential import,
semantic interpretation of constructions with the same. On this interpretation of (16),
for instance, it is neither presupposed nor entailed that any reading of any book by
any student took place and thus (16) does not entail (17) neither on the subject not
on the object wide scope readings of (16):
.
(16) Every student read the same books.
(17) Every student read some book(s).

Thus on this ”logical” reading (16) is true if no student read any book. Observe
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that (18a) and (18b) do not sound as contradictory and consequently such a reading
is not absurd:

(18a) Every student read the same book, namely none.
(18b) Every student answered the same question, namely none.

The restriction to readings without existential import is not essential. It will be
shown below how we can obtain the semantics of the same which takes into account
the existential import as well.

There might be differences between the case where the same applies to a singular
CN and the case when it applies to a plural CN . For instance (19a) has probably a
reading with a ”partial sameness” which does not entail that all students read exactly
one book. This reading can be expressed by the object wide scope reading of the
quantifier EXACTLY -ONE or even SOME, as in (19b) or (19c):

(19a) Every student read the same book.
(19b) EXACTLY -ONE(BOOK)(EV ERY (S)nom)(READ)
(19c) SOME(BOOK)(EV ERY (S)nom)(READ)

Such a reading with scope inversion clearly occurs with the expression like the
same n CN as illustrated in (20). In this sentence the set of books read by every
student needs not to be the same as shown by the non-contradiction of (21):

(20) Every student read the same five books.
(21) Every student read the same five books and ten different.

It seems that in sentences with the same CN, where CN is in plural, the reading
equivalent to the reading with inversed scope, that is the reading with ”partial same-
ness” is not possible as witnessed by the contradiction of (22):

(22) Leo and Lea read the same books and Leo, but not Lea, read in addition Exciting
Humor

What (16) essentially says is that no book is such that it was read by some but
not by all students or, equivalently, that any book that was read by any student was
read by every student. Thus (16) should satisfy condition given in (23a) or (23b):

(23a) NO(B)[(SOME(S) ∧ ¬EV ERY (S)]R = 1
(23b) SOME(S)R ∩B ⊆ EV ERY (S)R ∩B

Sentence in (16) is just a particular case of constructions with the same occurring
in the direct object NP. An important point is that in (16) the quantified NP in
the subject position can be replaced by many other quantified NP s, and even non-
quantified ones. This can be seen in (24):

(24) No students/most students/five students/at least two students/Leo and Lea read
the same book(s)

It is not easy to describe restrictions on noun phrases in sentences of the above
type. It seems clear that semantically they should denote plural quantifiers. For
instance the interpretation of (16) should be the same as the interpretation of (25a)
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and (25b) should have the same interpretation as (25c):

(25a) Every (group of) two students read the same books.
(25b) No students read the same books.
(25c) No two students read the same books.

In order to establish the relationship between set partitions and the semantics
of the same, we start with the observation that any mapping of A establishes an
equivalence relation on A. In the case at hand, we can take, informally, the mapping
which associates with x ∈ E the set of ”the same X” modulo the relation R. More
precisely, the function SAME(X,R) partitions the universe E in the way that any
block B of the partition is related to a subset X1 of X by the fact that any member
of B is in a relation R with any member of X1. The quantifier corresponding to the
subject NP can be true or not of such a block of the partition.

We can thus specify the function SAME(X,R), denoted by the determiner the
same using the partition ΠRX

(E). The definition to be given will be definition ”by
cases”. The output of the function to be defined, that is a set of plural type 〈1〉
quantifiers, will in general contain three parts: positive, negative and ”atomic”. The
positive part corresponds, roughly, to the set of quantifiers true of some block of the
partition and the negative part corresponds to the set of quantifiers false of sets which
are not blocks of the partition.

We will say that the block of a partition is singular if it is a singleton. A block B
is plural, B ∈ PL, if it is contains at least two elements. A partition is atomic iff all
its blocks are singular. With the help of these notions, using the partition ΠRA

(E) we
can now express the function SAME(X,R), where R is a binary relation, as follows
(for X and R non-empty):

D13 SAME(X,R) =
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX

(E) is atomic
(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ ΠRX

(E) ∧B ∈ PL ∧Q(B) = 1)}∪
{Q : Q ∈ PLR∧∃C⊆E∀B∈ΠRX

(E)(C 6⊆ B∧¬ALL(C) ⊆ Q)}, if ΠRX
(E) is not atomic.

The above definition says that SAME applied to a set X and a binary relation R
gives as result a set of quantifiers. This set can be decomposed into various sub-sets
depending on the structure of the partition of E induced by R and X. Clause (i) says
that when the partition is atomic then no two objects are in the relation R with all
objects of a sub-set of X. This entails that the quantifier denoted by no two objects
and any of its consequences belong to the set SAME(X,R). This means that, for
instance, the quantifiers denoted by no five objects or no two students also belong to
the set SAME(X,R).

Clause (ii) concerns the case where the partition is not atomic. In this case there
is at least one plural block of the partition such that all its members are, roughly
speaking, in the relation R with the same subset of X. This block corresponds to
the property expressing the sameness we are looking for and a plural quantifier can
be true or false of it. The second part of the clause (ii) provides a set of quantifiers
obtained from a ”negative information” given by sets which are not blocks of the
partition. If, for instance, Jiro and Taro are Japanese students who read different
books then no set to which they belong is a block of ΠRB

(E) - where R corresponds
to READ and B - to BOOK. Then, according to the second part of the clause (ii),
the quantifiers denoted by the NPs not all Japanese students, not all students and
not all Japanese belong to SAME(B,R).
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In D13 we use explicitly Boolean complements of some quantifiers. Interestingly,
Boolean complements of quantifiers can frequently occur in sentences with the same.
Thus probably (26) is a sloppy way of expressing (27) where the Boolean complement
of a type 〈1〉 quantifier explicitly occurs:

(26) No students read the same book.
(27) No two students read the same book.

Consider now example (28a). I take it for granted that (32a) is equivalent to (28b)
and thus that it is true if and only if (29) is false:

(28a) No three students read the same books.
(28b) It is not true that three students read the same books.
(29) Three students read the same books.

In (28a) the NP no three students denotes the quantifier ¬3(S), where 3(S)(Y ) = 1
iff |S∩Y | ≥ 3. Thus if there is no bloc of which 3(S) is true then the quantifier ¬3(S)
belongs to SAME(B,R).

Natural languages also have verbal arguments containing the same which can ex-
press ”sameness of cardinality” as in the following examples:

(30) Leo and Lea read the same number of books.
(31) Most Japanese know the same number of languages.

In these examples the same number of is a higher order determiner which forms
a veral argument when applied to a CN . So it denotes a type 〈1, 2 : 〈1〉〉 function
as does the determiner the same. It seems natural and obvious to use the partition
induced by the equivalence relation eR,n to describe this function. Thus the definition
of the function SAME-N denoted by the generalised determiner the same number
of is quite similar to the definition of the function SAME(X,R). We just have to
replace everywhere in D13 the partition ΠRX

(E) by the partition ΠRX ,n(E). Conse-
quently we have:

D14: SAME-N(X,R)=
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX,n

(E) is atomic
(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ ΠRX,n

(E) ∧B ∈ PL ∧Q(B) = 1)}∪
{Q : Q ∈ PLR ∧ ∃C⊆E(C 6∈ ΠRX

(E) ∧ ¬ALL(C) ⊆ Q)}, if ΠRX
(E) is not atomic.

Definitions D13 and D14 provide the readings of the same and the same number
of without the existential import. In order to get the reading in which the existential
import is involved the following equivalence relations have to be used:

(32) eeiR = {〈x, y〉 : (xR = yR ∧ xR 6= ∅) ∨ (x = y)}
(33) eeiR,n = {〈x, y〉 : (|xR| = |yR| ∧ xR 6= ∅) ∨ (x = y)}

The relation eeiR defines the partition Πei
R(E) and the relation eeiR,n defines the par-

tition Πei
R,n(E). It follows from (32) and (33) that if aR = ∅, then the singleton {a}

is a singular block of both partitions Πei
R and Πei

R,n and thus is not a member of any
plural quantifier. Consequently the reading of the same with the existential import
is given in D15:
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D15: SAMEei(X,R)=
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if Πei

RX
(E) is atomic

(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ Πei
RX

(E) ∧B ∈ PL ∧Q(B) = 1)}∪
{Q : Q ∈ PLR ∧ ∃C⊆E∀B∈Πei

RX
(E)(C 6⊆ B) ∧ ¬ALL(C) ⊆ Q)}, if Πei

RX
(E) is not

atomic.

The expressions the same CN and the same number of CN can also occur, though
less frequently, in subject position:

(34a) The same actors played three characters of the movie.
(34b) The same number of errors occurred in most papers.

In order to express a reading with the the ”full sameness” in such sentences we
have to take the inverse R−1 of the binary relation R denoted by the TV of such
sentences. This means that the partitions to be used in the analysis of sentences with
the same CN are ΠR−1(E) and ΠR−1,n(E)

When describing the semantics of ditransitive sentences with the same one has to
distinguish various cases, all of which will not be discussed here. The simplest case
is when the same CN occurs in the indirect object position and its antecedent, the
plural NP , occurs in the subject position:

(35) Leo and Lea gave five books to the same children.

Recall (cf. D4) that type 〈1〉 quantifier can be treated as arity reducing function:
it applies to a ternary relation and gives a binary relation. One can consider that
in the above example the quantifier FIV E(BOOK) applies to the ternary relation
GIV E...TO and gives a binary relation GIV E-FIV E(BOOK)-TO. Then the func-
tion SAME applies to this relation in the way indicated in D13 or in D15.

As shown in (11) it is possible to have ditransitive sentences in which the same
CN occurs twice: in the direct object position and in the indirect object position.
The pretheoretical interpretation of such sentences is not easy and their truth con-
ditions are not obvious. However, the interpretation of such sentences also involves
partitions of sets. These partitions are induced by a ternary relations. Consider again
the example (36):

(36) Leo and Lea gave the same books to the same children.

It might be tempting to analyse such sentences using the equivalence relation defined
in D6(iii): we look at the blocks of the partition which contain the first elements of the
triples which have the same second elements and the same third elements. This move
should be abandoned, however. First, this way of semantic calculation is probably
not compositional since it entails that there is a syntactic rule which combines two
verbal arguments, both of the form the same CN, before one of them applies to the
ditransitive verb. Second, the semantic result obtained in this way is not satisfactory.
To see this, consider the ternary relation given in (37):

(37) S = {〈a1, , b1, c1〉, 〈a2, b1, , c1〉, 〈a1, b2, c2〉, 〈a2.b2, c2〉, 〈a3, b2, c2〉}

Using definition D6 (iii) and the relation S in (37) we obtain as one of the blocks
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{a1, a2}. This means that if S corresponds to the relation GIV E-TO in (36) then a1

and a2 gave the same book (b1) to the same child (c1). Informally this is true but in
addition it is also true that a1, a2 and a3 gave the same book (b2) to the same child
(c2). This last information cannot be obtained from the partition defined in D6 (iii)
since the set {a1, a2, a3} is not a block of the partition..

The way out is to reduce a ternary relation in sentences like (37) to a set of binary
relations using an equivalence relation like the one in D6 (i) and then reduce these
binary relations to a set of unary relations, that is a set of sets and then proceed,
roughly speaking, as indicated in D13.

Before clarifying this idea we need to modify the equivalence relation in definition
D6 (ii) in the way the equivalence relations in D5 were modified to get readings with
the existential import according to definitions given in (32) and (33). The reason is
that to interpret (36) in a purely logical way without supposing that any books were
given to any children is very unnatural. Consequently given a ternary relation S we
define the following equivalence relations induced by S:

(38a) e2cS = {〈〈a1, a3〉, 〈b1, b3〉〉 : (〈a1, a3〉S = 〈b1, b3〉S ∧ 〈a1, a3〉S 6= ∅) ∨ 〈a1, a3〉 =
〈b1, b3〉}
(38b) e2cS,n = {〈〈a1, a3〉, 〈b1, b3〉〉 : (|〈a1, a3〉S| = |〈b1, b3〉S| ∧ 〈a1, a3〉S 6= ∅) ∨
〈a1, a3〉 = 〈b1, b3〉}

These modified definitions can be used to define the semantics of ditransitive sen-
tences with two the same CN as in (36), that is sentences of the form (10d), repeated
here:

(10d) NP DTV P THE SAME CN1 Prep THE SAME CN2

The DTV P denotes the ternary relation S, CN1 denotes the set X and CN2 denotes
the set Y . The function SAME(X,S)-SAME(Y, S), corresponding to the applica-
tion of SAME(Y,R) to the result of application of SAME(X,R) to S, is defined in
D16:

D16: SAME(X,S)-SAME(Y, S)=
(i)={Q : Q ∈ PLR∧¬2(E) ⊆ Q} if for any R ∈ ΠSX,Y

(E) any B ∈ Πei
R(E) is singular

(ii)={Q : Q ∈ PLR ∧ ∃R(R ∈ ΠSX,Y
(E)) ∧ ∃B(B ∈ Πei

R(E) ∧B ∈ PL ∧Q(B) = 1}∪
{Q : Q ∈ PLR ∧ ∃C⊆E∀R(R ∈ Πei

SX,Y
∀B(B ∈ Πei

R(C 6⊆ B ∧ ¬ALL(C) ⊆ Q}

Applying definition D16 to the relation S given in (37) we obtain two non-singular
blocks {a1, a2} and {a1, a2, a3} of which two different type 〈1〉 quantifiers can be true.

The generalised determiner the same can also be used in conjunctive sentences,
that is sentences in which a conjunction of many transitive verbs occurs. As Carlson
(1987) points out, the sentence internal reading depends on distributing over separate
events and a comparison of them. In sentences discussed until now a comparison of
events due to actions performed by at least two agents is involved. Multiple events
can be also obtained in the case of conjunctions of V P s. In such cases one agent
performs actions giving rise to multiple events which are compared or differentiated.

As in the case of non-conjunctive sentences, two types of determiners can be used
in conjunctive sentences: those expressing, roughly, the sameness of sets as in (39)
and those expressing the sameness of cardinality of sets, as in (40):

(39) Leo bought and read the same books.

13



(40) Leo bought and read the same number of books.

In these sentences the same denotes a function of type 〈1, 22 : 〈1〉〉. Strictly
speaking, however, the number of relational arguments is not limited and thus func-
tions denoted by the same in sentences expressing multiple events are of the type
〈1, 2k : 〈1〉〉, for any finite k. I will consider only the case of two relational arguments,
that is when k = 2.

A possible approach to the same in conjunctive sentences, the approach taken
for instance in Zuber (2011), is to use the notion of nominal case extension. Then
sentence (39) would be true iff the set of books that Leo bought equals the set of
books that Lea read. And the set of books that Leo read is obtained by applying the
nominal extension of the quantifier denoted by Leo to the relation READ and taking
the intersection with the set of books. This proposal does not work, however, for all
types of subject NP s. Consider for instance (41):

(41) Only Leo read and sold the same books.

It may happen that books that only Leo read are the same as books that only Leo
sold but (41) may be false. This is the case for instance when R = {〈l, b1〉, 〈s1, b2〉}
and S = {〈l, b1〉, 〈s1, b2〉, 〈s2, b3〉}. One can see that the book that only l read is the
same that the book that only l sold but (41) is not true because s1 also read and sold
the same book.

More correct and, interestingly, simpler, approach is to consider that the function
involved in the interpretation of (39) or (40) has a set (of individuals) as output. This
set is easy to specify. In other words we have the following type 〈1, 22 : 1〉 functions
involved in the interpretation of conjunctive sentences: in D17 we have the function
interpreting (39) and in D18 the function interpreting (40):

D17: SAME2(X,R, S) = {x : xR ∩X = xS ∩X}
D18: SAME2-N(X,R, S) = {x : |xR ∩X| = |xS ∩X|}

It follows from D17 that (41) is false in the model indicated above. The reason is
that in this model SAME2(X,R, S) = {l, s1} and thus it is not true that only l read
(R) and bought (S) the same book.

Clearly sentences similar to (39) or (40) in which a plural subject NP occurs are
ambiguous since they can be taken as conjunctive sentences or non-conjunctive ones
in which an ordinary conjunction of two transitive verbs occurs. Thus (42) can mean
either (43a) -conjunctive or (43b) non-conjunctive:

(42) Leo and Lea bought and read the same book.
(43a) Leo bought and read the same book and Lea bought and read the same book.
(43b) Leo bought and read exactly the same book as the book that was bought and
read by Lea.

The tools presented above easily allow the disambiguisation of such sentences.
Though there are subtle differences between (a) different and the same which

mean that they are not completely analogous (cf. Hardt and Mikkelsen 2015), these
two generalised determiners are logically related. As the following examples show, a
different can occur in transitive and ditransitive constructions which are quite similar
to those in which the same occurs. In particular (a) different can express ”set dif-
ference”, ”cardinality difference”, multiple events set difference and multiple events
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cardinality difference:

(44) Leo and Lea solved different problems
(45) Most students solved a different number of problems.
(46) Leo invented and solved different problems.
(47) Leo invented and solved a different number of problems.

One can distinguish at least two readings of different according to whether the
corresponding sets are just different or whether they are ”strongly different” that is
their intersection is empty. For instance if the sets of problems that Leo and Lea
solved are not the same then (44) is true on the weak reading of different and if these
sets are disjoint then (44) is true on the strong reading of different.

The strong difference heavily depends on the argument X. For instance for (50)
to be true there must be at least two problems. The weak reading of (a) different is
related to the reading of the same via Boolean complementation:

D19: (i) DIFF (X,R) = (SAME(X,R))′, if X 6= ∅
(ii) DIFF (X,R) = {Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q} if X = ∅
D20: (i) DIFF -N(X,R) = (SAME-N(X,R))′, if X 6= ∅
(ii) DIFF -N(X,R) = {Q : ¬2(E) ⊆ Q} if X = ∅
D21: (i) DIFF2(X,R, S) = (SAME2(X,R, S))′, if X 6= ∅
(ii) DIFF2(X,R, S) = ∅ if X = ∅
D22: (i) DIFF2-N(X,R, S) = (SAME2-N(X,R, S))′, if X 6= ∅
(ii) DIFF2-N(X,R, S) = ∅ if X = ∅

The above definitions correspond to examples (44) - (47) respectively.
I conclude this section by indicating that the determiners the same can take many

CNs as argument. For instance (48) naturally means (49):

(48) Leo and Lea read the same novels and plays.
(49) Leo and Lea read the same novels and they read the same plays

In (48) the same denotes a type 〈12, 2 : 〈1〉〉 function. It is a meet of two type
〈1, 2 : 〈1〉〉 functions. In the following example a type 〈12, 22 : 〈1〉〉 function is involved:

(50) Leo bought and read the same novels and plays.

The function interpreting (42) is also a meet of two type 〈1, 22 : 〈1〉〉 functions.
I mention the above examples to show informally the parallelism between ”ordi-

nary” determiners and higher order determiners. Ordinary n-ary determiners have
been extensively studied (Keenan and Moss 1986, Beghelli 1994). We know for in-
stance that there are binary determiners which denote functions which are not Boolean
compositions of functions denoted by unary quantifiers. It is not clear whether there
such irreducible higher order determiners. A possible candidate is given in (51). Ob-
serve that (51) entails neither (52a) nor (52b):

(51) Leo and Lea read more of the same plays than novels.
(52a) Leo and Lea read the same plays.
(52b) Leo and Lea read the same novels.
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As far as I can tell the proposal made here to use the notion of set partition cannot
be applied to the analysis of (51).

In the next section similarities between simple and higher order determiners are
indicated more formally.

4 Some properties

Functions discussed in the previous section are not, strictly speaking quantifiers be-
cause their output is not a truth-value. Intuitively, however, they involve quantifi-
cation in some way and so it might be interesting to try to grasp their similarities
with quantifiers. I will do this in two ways: by showing that they share many formal
properties with quantifiers and by showing some inference patterns they share with
quantifiers.

Consider first the function WSAME(X,R) defined in (53). This function has
been proposed by Zuber (2011) as yielding the semantics of the same CN in general:

(53) WSAME(X,R) = {Q : Q ∈ PL ∧QdR ∩X ⊆ QR ∩X}

The following proposition indicates the relationship between WSAME and SAME:

Proposition 4: Ft(A) ∈ SAME(X,R) iff Ft(A) ∈WSAME(X,R) (for |A| ≥ 2)
.
Proof: From left to right: Suppose a contrario that (i) Ft(A) ∈ SAME(X,R) and
(ii) Ft(A) /∈ WSAME(X,R). It follows from D13 and (i) that there is a block
B ∈ ΠRX

(E) such that A ⊆ B. It follows from (ii) that for some c1, c2 ∈ A we have
c1RX 6= c2RX . Contradiction.
From right to left: If Ft(A) ∈ WSAME(X,R) then Ft(A)dR ∩ X ⊆ Ft(A)R ∩ X.
But then ∀y,z∈A(yRX = zRX). This means that for some block B ∈ ΠRX

(E) we have
A ⊆ B and thus Ft(A) ∈ SAME(X,R).

One can check that Ft(A) in proposition 4 cannot be replaced by many other type
〈1〉 quantifiers. This means that the function WSAME accounts for the semantics
of sentences with the same only if their subject NP denotes a principal filter.

Definitions D13 and D14 allow us also to prove:

Proposition 5: If X 6= ∅ and R 6= ∅ then Q ∈ SAME(X,R) or ¬Q ∈ SAME(X,R)
and Q ∈ SAME-N(X,R) or ¬Q ∈ SAME-N(X,R), for any Q ∈ PLR.

Other formal properties of functions denoted by constructions with the same are
those which are related to conservativity and its sub-properties, generalised in a nat-
ural way. They are defined in section 2 above. Thus, using Proposition 3 it is easy to
prove:

Proposition 6: Functions SAME, SAMEei and DIFF are intersective.

Concerning the type 〈1, 2 : 〈1〉〉 functions denoted by the determiner the same
number of and different number of we have:

Proposition 7: The functions SAME-N and DIFF -N are cardinal.
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Proof: We prove only that SAME-N is cardinal. Given D8 we have to show that
SAME-N(X1, R) = SAME-N(X2, S) if (i): ∀y∈E(|X1∩yR| = |X2∩yS|) holds. But
if (i) holds then ΠRX1

,n(Y ) = ΠSX2
,n(Y ), for any Y 6= ∅

For type 〈1, 22 : 1〉 involved in the interpretation of conjunctive sentences we have:

Proposition 8 (i): SAME2(X,R, S) is intersective.
(ii) SAME2-N(X,R, S) is cardinal.

Since cardinality and intersectivity imply conservativity, all the above functions
are conservative.

Let us see some properties which can be used to form specific inference patterns.
First, given the fact that aR = aS iff aR′ = aS′ and |aR| = |aS| iff |aR′| = |aS′| one
can see that functions SAME, SAME-N , SAME2 and SAME2-N behave the same
way on their relational arguments as they do on the complements of these arguments.
More precisely we have:

Proposition 9 (i): SAME(X,R) = SAME(X,R′).
(ii) SAME-N(X,R)=SAME-N(X,R′)
(iii) SAME2(X,R) = SAME2(X,R′)
(iv) SAME2-N(X,R) = SAME2-N(X,R′)

A similar proposition does not hold for the the function SAMEei.
The identity of truth values between (54a) and (54b) illustrates clause (i) of the

Proposition 9 and the identity of truth values between (55a) and (55b) illustrates
clause (ii):

(54a) The books that most students read are the same.
(54b) The books that most students did not read are the same.
(55a) The number of books that most students read is the same.
(55b) The number of books that most students did not read is the same.

Let us see now some properties which give rise to inferential patterns in which
some of the functions discussed above are involved. Using Proposition 1 and defini-
tion D13 one can prove Proposition 10. It is illustrated by the inference from (56a)
to (56b):

Proposition 10: LetX1 ⊆ X2. ThenMON∩SAME(X2, R) ⊆MON∩SAME(X1, R)

(56a) Some students/mosts students read the same novels.
(56b) Some students/mosts students read the same Japanese novels.

The next proposition concerns the relationship between SAME and DIFF re-
stricted to principal filters. The pattern to which it gives rise is illustrated by the
equivalence between (57a) and (57b) (cf. Keenan 2005):

Proposition 11: Ft(A) ∈ SAME(X,R) iff Ft(A)¬ ∈ DIFF (X,R)

(57a) Every student read the same novel.
(57b) No students read a different novel.
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The last pattern I want to indicate concerns sentences whose direct object NPs
are formed by determiners denoting atomic intersective or co-intersective type 〈1, 1〉
quantifiers. Here are some examples: (58) entails (59).

(58) Leo and Lea/most students read every book/no book except Exciting Humour
(59) Leo and Lea/most students read the same book(s)

The object every book is formed by application of the determiner every to the CN
book. The determiner every denotes the atom EV ERY of the algebra of co-intersective
type 〈1, 1〉 quantifiers such that EV ERY (X)(Y ) = 1 iff X ∩ Y ′ = ∅. Similarly, the
determiner no... except Exciting Humor denotes the atom NOEH of intersective type
〈1, 1〉 quantifiers such that NOEH(X)(Y ) = 1 iff X ∩ Y = {EH}.

The following proposition justifies the pattern underlying the above inference:

Proposition 12: Let Q be monotone increasing, Q ∈ PLR, R be a binary relation and
DA be an atom of INT or of CO-INT . Then (i) entails (ii):
(i) Q(DA(X)accR) = 1
(ii) Q ∈ SAME(X,R))

Proof: Suppose that C = DA(X)acc(R). Then, given D2, we have C = {y : X ∩yR =
A}. If Q(C) = 1 then |C| ≥ 2. It is easy to see that there exists a block B of ΠRX

(E)
such that C ⊆ B. Since Q(C) = 1 and because Q ∈ MON , we have Q(B) = 1 and
thus Q ∈ SAME(X,R). If DA is co-intersective we use Proposition 9 and reason in
the similar way.

The entailments indicated in proposition 12 hold under the non-cumulative and
subject wide-scope reading of the NP corresponding to the quantifier Q.

Similar inference patterns concerning ”numerical sameness” can be obtained with
the help of type 〈1, 1〉 cardinal and co-cardinal atomic quantifiers. The following
proposition has a proof similar to Proposition 12:

Proposition 13: Let Q ∈ MON , Q ∈ PLR and EXACTn be an atom of CARD or
of CO-CARD. Then (i) entails (ii):
(i) Q(EXACTn(X)accR)
(ii) Q ∈ SAME-N(X,R)

Proposition 13 can be illustrated by the following sentences: (60) entails (61):

(60) Leo and Lea hug all but five teachers.
(61) Leo and Lea hug the same number of teachers.

Interestingly, similar inferences are not in general possible with conjunctive sen-
tences. Thus (62) does not entail (63):

(62) Leo bought and read every book except Exciting Humour.
(63) Leo bought and read the same books.

By contraposing various implications underlying the above patterns we obtain
a similar series of inference patterns concerning the determiner different and the
functions DIFF and DIFF -N . Easy examples of instances of such patterns are
omitted.
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Though the inferences presented above are not very deep, they can be considered
as an additional justification for the analysis proposed here.
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