A comprehensive view on inflectional classification

S. Beniamine, O. Bonami Laboratoire de Linguistique Formelle Université Paris Diderot sbeniamine@linguist.univ-paris-diderot.fr LAGB 2016, York

Inflection classes

► Classification of lexemes according to inflectional behavior.

	1st decle	ension	2nd declension		
Case	SINGULAR	PLURAL	SINGULAR	PLURAL	
Nominative	rosa	rosae	dominus	dominī	
Vocative	rosa	rosae	domine	dominī	
Accusative	rosam	rosas	dominum	dominōs	
Genitive	rosae	rosarum	dominī	dominōrum	
DATIVE	rosae	rosis	dominō	dominīs	
Ablative	rosa	rosis	dominō	dominīs	

Table : Latin declension classes

What is this talk about ?

Table : Several types of classification structures

What is this talk about ?

Table : Several types of classification structures

• "Inflection classes" usually refers to either (1) or (2).

Table : Several types of classification structures

- "Inflection classes" usually refers to either (1) or (2).
- ► We argue that these overlook important relations between lexemes,

Table : Several types of classification structures

- "Inflection classes" usually refers to either (1) or (2).
- ► We argue that these overlook important relations between lexemes,
- ► and hide structural properties that are in fact pervasive.

Table : Several types of classification structures

- ► "Inflection classes" usually refers to either (1) or (2).
- ► We argue that these overlook important relations between lexemes,
- ► and hide structural properties that are in fact pervasive.
- ► Taking advantage of automation to work on large datasets,

Table : Several types of classification structures

- ► "Inflection classes" usually refers to either (1) or (2).
- ► We argue that these overlook important relations between lexemes,
- ► and hide structural properties that are in fact pervasive.
- ► Taking advantage of automation to work on large datasets,
- ▶ we argue that lattices (3) are a more faithful model of IC.

Outline

- 1. Specificities of this approach
- 2. Background on Inflection Classes
- 3. How to model IC system as lattices
- 4. Towards a typology of IC lattices

Table of Contents

1. Specificities of this approach

2. Background on Inflection Classes

3. How to model IC system as lattices

4. Towards a typology of IC lattices

► We take **inflectional behaviour** to be relations between word-forms, or **alternation patterns** (not morphemes). (Blevins, 2006)

- ► We take **inflectional behaviour** to be relations between word-forms, or **alternation patterns** (not morphemes). (Blevins, 2006)
- Patterns take surface alternation at face value and do not require to choose between stem or exponent alternation.

- ► We take **inflectional behaviour** to be relations between word-forms, or **alternation patterns** (not morphemes). (Blevins, 2006)
- Patterns take surface alternation at face value and do not require to choose between stem or exponent alternation.
- We infer those automatically.

- ► We take **inflectional behaviour** to be relations between word-forms, or **alternation patterns** (not morphemes). (Blevins, 2006)
- Patterns take surface alternation at face value and do not require to choose between stem or exponent alternation.
- We infer those automatically.
 - ► We wrote an language-independent algorithm which relies on phonology-aware alignment (Frisch, 1997) of wordform pairs, inspired by Albright and Hayes, 2006.

Inflectional paradigms

lexeme	PAST	PPART	PRES	PRES3S	PRESPART
DRIVE	drəʊv	drīvņ	draɪv	draıvz	draɪvɪŋ
RIDE	rəʊd	rıdņ	raıd	raıdz	raıdıŋ
BITE	bıt	bɪtņ	baɪt	barts	baɪtɪŋ
FORGET	fəg¤t	fəgotņ	fəgɛt	fəgɛts	fəgɛtɪŋ

Table : Inflectional paradigm for some English verbs.

The pattern table

Lexemes are characterized by their collection of patterns (All pairwise alternations).

lexeme	PAST⇔PPART	PAST⇔PRES3S	PRES3S⇔PRESNOT3S	PPART⇔PRESNOT3S	PPART⇔PRESPART
DRIVE	XəʊC ⇔ XıCņ	XəʊC_ ≓ XaıCz	$X_Z \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ≓ XaıCıŋ
RIDE	XəʊC ⇔ XıCņ	XəʊC ≓ XaıCz	$X_Z \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ≓ XaıCıŋ
BITE	X≓Xņ	XıC ≓ XaıCs	$Xs \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ≓ XaıCıŋ
FORGET	$X \rightleftharpoons X \dot{n}$	$XDC \rightleftharpoons XECs$	$Xs \rightleftharpoons X$	$X DC n \rightleftharpoons X \epsilon C$	XoCņ ≓ XεCıŋ
lexeme	PAST⇔PRESNOT3S	PPART⇔PRES3S	PRESNOT3S⇔PRESPART	PAST⇔PRESPART	PRES3S⇔PRESPART
DRIVE	XəʊC ⇄ XaɪC	XıCņ ⇔ XaıCz	X≓Xıŋ	XəʊC ⇄ XaɪCɪŋ	Xz≓Xıŋ
RIDE	Xəʊ ⇔ Xaı	XıCņ ⇔ XaıCz	X≓Xıŋ	XəʊC ⇄ XaɪCɪŋ	Xz≓Xıŋ
BITE	XıC ⇔ XaıC	XıCņ ≓ XaıCs	X≓Xıŋ	XVt ≓ XaıtVŋ	Xs ≓ Xıŋ
FORGET	$X_DC \rightleftharpoons X_{\mathcal{E}}C$	XpCn ≓ XεCs	X⇔Xm	$X_DC \rightleftharpoons X_EC_{III}$	$X_s \rightleftharpoons X_{III}$

Table : Pattern table for some English verbs.

The pattern table

Lexemes are characterized by their collection of patterns (All pairwise alternations).

lexeme	PAST⇔PPART	PAST⇔PRES3S	PRES3S⇔PRESNOT3S	PPART⇔PRESNOT3S	PPART⇔PRESPART
DRIVE	XəʊC ⇔ XıCņ	XəʊC_ ⇌ XaıCz	$X_Z \rightleftharpoons X$	XıCņ ⇔ XaıC	XıCņ ≓ XaıCıŋ
RIDE	XəʊC ⇄ XıCņ	XəʊC ⇄ XaɪCz	$Xz \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ⇔ XaıCıŋ
BITE	X≓Xņ	XıC ⇔ XaıCs	$Xs \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ⇔ XaıCıŋ
FORGET	$X \rightleftharpoons X \dot{n}$	$XDC \rightleftharpoons XECs$	$Xs \rightleftharpoons X$	$X DC n \rightleftharpoons X \epsilon C$	XoCņ ≓ XεCıŋ
lexeme	PAST⇔PRESNOT3S	PPART⇔PRES3S	PRESNOT3S⇔PRESPART	PAST⇔PRESPART	PRES3S⇔PRESPART
DRIVE	XəʊC ⇌ XaɪC	XıCņ ⇔ XaıCz	X⇔Xıŋ	XəʊC ⇄ XaɪCɪŋ	Xz ⇔ Xıŋ
RIDE	Xəʊ ⇔ Xaı	XıCņ ⇔ XaıCz	X≓Xıŋ	XəʊC ⇄ XaɪCɪŋ	Xz ⇔ Xıŋ
BITE	XıC ⇔ XaıC	XıCņ ≓ XaıCs	X≓Xıŋ	XVt ≓ XaıtVŋ	Xs ⇔ Xıŋ
FORGET	$XDC \rightleftharpoons X\epsilon C$	X _D Cn ≓ XεCs	X ⇔ Xıŋ	$XDC \rightleftharpoons X\epsilon Cin$	Xs ≓ Xıŋ

Table : Pattern table for some English verbs.

The pattern table

Lexemes are characterized by their collection of patterns (All pairwise alternations).

lexeme	PAST⇔PPART	PAST⇔PRES3S	PRES3S⇔PRESNOT3S	PPART⇔PRESNOT3S	PPART⇔PRESPART
DRIVE	XəʊC ⇔ XıCņ	XəʊC_ ⇌ XaıCz	$X_Z \rightleftharpoons X$	XıCņ ≓ XaıC	XıCņ ⇔ XaıCıŋ
RIDE	XəʊC ⇄ XıCņ	XəʊC ⇄ XaɪCz	$X_Z \rightleftharpoons X$	XıCņ ⇔ XaıC	XıCņ ≓ XaıCıŋ
BITE	X≓Xņ	XıC ≓ XaıCs	$Xs \rightleftharpoons X$	XıCņ ⇔ XaıC	XıCņ ≓ XaıCıŋ
FORGET	X ⇔ Xņ	$XDC \rightleftharpoons X\epsilon Cs$	$Xs \rightleftharpoons X$	$X DC n \rightleftharpoons X \epsilon C$	XυCņ ≓ XεCıŋ
lexeme	PAST⇔PRESNOT3S	PPART⇔PRES3S	PRESNOT3S⇔PRESPART	PAST⇔PRESPART	PRES3S⇔PRESPART
lexeme DRIVE	PAST⇔PRESNOT3S XəʊC ⇔ XaiC	PPART⇔PRES3S XıCņ ⇔ XaıCz	presnot3s⇔prespart X ⇔ Xij	past⇔prespart XəʊC ⇔ XaiCiŋ	PRES3S⇔PRESPART Xz ⇔ Xıŋ
lexeme DRIVE RIDE	PAST⇔PRESNOT3S XəʊC ⇔ XaiC Xəʊ ⇔ Xai	PPART≓PRES3S XıCņ ≓ XaıCz XıCņ ≓ XaıCz	PRESNOT3S \rightleftharpoons PRESPART X \rightleftharpoons Xm X \rightleftharpoons Xm	PAST⇔PRESPART XəʊC ⇔ XaiCıŋ XəʊC ⇔ XaiCıŋ	PRES3S⇔PRESPART Xz ⇔ Xıŋ Xz ⇔ Xıŋ
lexeme DRIVE RIDE BITE	$pAST \rightleftharpoons PRESNOT3S$ $X \Rightarrow vC \rightleftharpoons XaiC$ $X \Rightarrow v \Leftrightarrow Xai$ $XiC \rightleftharpoons XaiC$	PPART⇔PRES3S XıCņ ⇔ XaıCz XıCņ ⇔ XaıCz XıCņ ⇔ XaıCz	PRESNOT3S \rightleftharpoons PRESPART X \rightleftharpoons Xnj X \rightleftharpoons Xnj X \rightleftharpoons Xnj X \rightleftharpoons Xnj	PAST⇔PRESPART XəʊC ⇔ XaıCıŋ XəʊC ⇔ XaıCıŋ XVt ⇔ XaıtVıj	PRES3S \rightleftharpoons PRESPART Xz \rightleftharpoons Xny Xz \rightleftharpoons Xny Xs \rightleftharpoons Xny

Table : Pattern table for some English verbs.

Automated approach

- ► Patterns and classification are generated by language-independent algorithms.
- This approach requires formal and quantifiable definitions of linguistic concepts,
- ▶ and allows us to work on large lexical databases,
- ► which paves the way for quantitative typological analysis of Inflection classes.

Table of Contents

1. Specificities of this approach

2. Background on Inflection Classes

3. How to model IC system as lattices

4. Towards a typology of IC lattices

Inflection Classes: identity or similarity ?

"a set of lexemes whose members each select the same set of inflectional realizations".

Aronoff (1994, p.64), Carstairs-McCarthy (1994, p.639)

Inflection Classes: identity or similarity ?

"a set of lexemes whose members each select the same set of inflectional realizations".

Aronoff (1994, p.64), Carstairs-McCarthy (1994, p.639)

 Applied to realistic datasets, this leads to a large number of (mostly) very small classes.

Inflection Classes: identity or similarity ?

"a set of lexemes whose members each select the same set of inflectional realizations".

```
Aronoff (1994, p.64), Carstairs-McCarthy (1994, p.639)
```

- Applied to realistic datasets, this leads to a large number of (mostly) very small classes.
- ► In practice, Carstairs-McCarthy and many other authors focus on larger but not fully coherent classes.

Varying degrees of similarity

• Dressler and Thornton's (1996) terminology:

lexeme	PAST	PPART	PRES	PRES3S	PRESPART
DRIVE	drəʊv	drīvņ	draıv	draīvz	draiviŋ
RIDE	rəʊd	rīdņ	raıd	raīdz	raidiŋ
BITE	bɪt	bītņ	baıt	baīts	baitiŋ
FORGET	fəgɒt	fəgptņ	fəgɛt	fəgēts	fəgɛtiŋ

Background on Inflection Classes

Varying degrees of similarity

- Dressler and Thornton's (1996) terminology:
 - Microclasses are based on identity

	lexeme	PAST	PPART	PRES	PRES3S	PRESPART
<	DRIVE	drəʊv rəʊd	drīvņ rīdņ	draīv raīd	draīvz raīdz	drarvıŋ raıdıŋ
•	–BITE –FORGET	bit fəgot	bitņ fəgotņ	bait fəget	baits fəgets	baitiŋ fəgɛtiŋ

Varying degrees of similarity

- Dressler and Thornton's (1996) terminology:
 - Microclasses are based on identity
 - Macroclasses are based on similarity
 - (see Beniamine, Bonami, and Sagot, 2015 for automatical inference of macroclasses)

	lexeme	PAST	PPART	PRES	PRES3S	PRESPART		
<	DRIVE RIDE	drəʊv rəʊd	drīvņ rīdņ	draıv raıd	draıvz raıdz	draıvıŋ raıdıŋ	>	>
•	—BITE —FORGET	bıt fəg¤t	bītņ fəgotņ	bart fəget	barts fəgets	baıtıŋ fəgɛtıŋ	>	>

Varying degrees of similarity

- ► Dressler and Thornton's (1996) terminology:
 - Microclasses are based on identity
 - Macroclasses are based on similarity (see Beniamine, Bonami, and Sagot, 2015 for automatical inference of macroclasses)
- Can form levels in a tree-shaped hierarchy.
 - Corbett and Fraser, 1993; Dressler and Thornton, 1996; Brown and Evans, 2012

	lexeme	PAST	PPART	PRES	PRES3S	PRESPART
	DRIVE RIDE —BITE	drəʊv rəʊd bɪt	drīvņ rīdņ bītņ	draıv raıd baıt	draīvz raīdz baīts	draıvıŋ raıdıŋ baıtıŋ
-	—FORGET	fəgot	fəgʊtņ	fəgɛt	fəgɛts	fəgɛtɪŋ

Typology of inflection classes

- Evaluate the variation in IC systems relatively to a canonical point of comparison.
- ► "Canonical IC are fully comparable and are distinguished as clearly as possible".

Corbett's (2009), Principle I

- Internally homogeneous
- Structurally identical
- Maximally different

Internal homogeneity

Within a canonical inflectional class each member behaves identically. Corbett (2009), criterion 3

► By definition, it is always true of microclasses.

Internal homogeneity

Within a canonical inflectional class each member behaves identically. Corbett (2009), criterion 3

- ► By definition, it is always true of microclasses.
- ► By definition, it is always false of any other classes.

Internal homogeneity

Within a canonical inflectional class each member behaves identically. Corbett (2009), criterion 3

- ► By definition, it is always true of microclasses.
- ► By definition, it is always false of any other classes.
- ► A system where microclasses and macroclasses coincide is the most canonical.

Identical structure

Canonical inflectional classes realize the same morphosyntactic or morphosemantic distinctions (they are of the same structure). Corbett (2009), criterion 2

► Two main deviations:

lexeme	PAST	PPART	PRES	PRES3S	PRESPART
beware abide	- əbaıdıd; əbəʊd	- əbaıdıd; əbaıdņ	bīweə əbaid	- əbaıdz	- əbaıdıŋ

Identical structure

Canonical inflectional classes realize the same morphosyntactic or morphosemantic distinctions (they are of the same structure). Corbett (2009), criterion 2

- Two main deviations:
- ► Defective microclasses lack forms for certain cells in the paradigm.

lexeme	PAST	PPART	PRES	PRES3S	PRESPART
beware	-	-	bɪwɛə	-	-
abide	əbaıdıd; əbəʊd	əbaıdıd; əbaıdņ	əbaıd	əbaıdz	əbaıdıŋ

Identical structure

Canonical inflectional classes realize the same morphosyntactic or morphosemantic distinctions (they are of the same structure). Corbett (2009), criterion 2

- Two main deviations:
- Defective microclasses lack forms for certain cells in the paradigm.
- Overabundant microclasses have several forms for certain cells in the paradigm.

lexeme	PAST	PPART	PRES	PRES3S	PRESPART
beware	-	-	bɪwɛə	-	-
abide	əbaıdıd; əbəʊd	əbaıdıd; əbaıdņ	əbaıd	əbaıdz	əbaıdıŋ

Pattern sharing

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

• A canonical system is a partition of microclasses.

Pattern sharing

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

- ► A canonical system is a partition of microclasses.
- ► Any pattern sharing across ICs is non canonical.

Pattern sharing

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

- A canonical system is a partition of microclasses.
- Any pattern sharing across ICs is non canonical.
- ► The typological extreme is a system where microclasses display maximal sharing of patterns.

Background on Inflection Classes

Pattern sharing: Heteroclisis

"a small number of items showing combinations of forms from other classes can be treated as heteroclites"

Corbett, 2009

► How to assess what small and big means quantitatively is uncertain.

Pattern sharing: Heteroclisis

▶ a microclass that shares patterns with at least two microclasses.

S. Beniamine, O. Bonami

Pattern sharing: Heteroclisis

► better represented by a **lattice** structure than by a tree.

Pattern sharing: Heteroclisis

- better represented by a **lattice** structure than by a tree.
- subtype of overlapping. Classes can also be overlapping because of overabundance.

Table of Contents

1. Specificities of this approach

2. Background on Inflection Classes

3. How to model IC system as lattices

4. Towards a typology of IC lattices

Lattices

- ► More accurate representation of non canonical phenomena.
- Every node in the lattice is an IC.

- ► Formal concept analysis: a branch of applied mathematics which deals with lattices. (Wille, 1984; Ganter, 1998; Bank, 2013-2016)
- ► Context: incidence table between objets and attributes.

		arC~XiCn as	PPART UOQX~D3	arC~XəvC _w	arC~XiC	EC~X _{bC}	PSTC-XICH PA-ST	PART
Context:		×	×	×	×	X	×	×
	drive	×		×			×	
	ride	\times		\times			×	
	bite	×			×			×
	forget		×			×		×

 Concept: A set of objects and a set of attributes, all objects have in common exactly these attributes, all attributes are shared by exactly these objects.

		BSE~F	E~PPART BSE~PST		C	PST~PPART		
Context:		$X_{alC} \sim X_{lC\eta}$	$X_{\mathcal{E}}C \sim X_{\mathcal{D}}C_{\mathcal{H}}$	X_{arC}	$X_{\rm alC} \sim X_{\rm lC}$	$X_{\epsilon \mathrm{C}} \sim X_{b \mathrm{C}}$	$\chi_{3} V C_{\gamma} X_{IC}$	$x_{\sim}X_{\eta}$
	drive	×		×			×	
	ride	×		×			×	
	bite	×			×			×
	forget		×			×		×

Concept: $\langle \{ \text{bite, forget} \}, \{ X \sim X n \} \rangle$

 Concept: A set of objects and a set of attributes, all objects have in common exactly these attributes, all attributes are shared by exactly these objects.

		BSE~I	PPART	BSE~PST		г	PST~PPART	
Context:		$X_{\mathrm{alC}\sim X_{\mathrm{IC}\eta}}$	$X_{\varepsilon} \mathcal{C}_{\cdot} X_{D} \mathcal{C}_{\eta}$	X_{alC} ~ X_{avC}	$X_{ m alC} \sim X_{ m IC}$	$X_{\mathcal{E}} \mathcal{C}_{\sim} X_{\mathcal{D}} \mathcal{C}$	$\chi_{avC \sim \chi_{IC\eta}}$	$^{th}X^{-X}$
	drive	×		×			×	
	ride	×		×			×	
	bite	×			×			×
	forget		×			×		\times

Concept: $\langle \{ drive, ride \}, \{ XaiC \sim XiCn, XaiC \sim XavC, XavC \sim XiCn \} \rangle$

 Concept: A set of objects and a set of attributes, all objects have in common exactly these attributes, all attributes are shared by exactly these objects.

		BSE~PPART		BSE~PST			PST~PPART	
Context:		X_{alC} - $X_{\mathrm{IC}\eta}$	$X_{\epsilon C} \cdot X_{b C_{\eta}}$	X_{arC} , X_{avC}	XarC~XIC	$X_{\epsilon C} X_{b C}$	$\chi_{2} V_{C} \cdot \chi_{IC_{H}}$	$^{th}X^{\sim}X^{th}$
	drive	×		×			×	
	ride	×		×			×	
	bite	×			×			×
	forget		×			×		×

 $\textbf{Concept:} \quad \langle \{ drive, ride, bite \}, \{ XaiC~XiCn \} \rangle$

 Concept: A set of objects and a set of attributes, all objects have in common exactly these attributes, all attributes are shared by exactly these objects.

		BSE~PPART		BSE~PST			PST~PPART	
Context:		X_{alC} - $X_{\mathrm{IC}\eta}$	$X_{\epsilon C} \sim X_{b C_{\eta}}$	X_{arC} , X_{avC}	XarC~XIC	$X_{\epsilon C} \cdot X_{bC}$	$\chi_{\partial vC^{\sim}X_{I}C_{II}}$	$^{t}X \sim X^{th}$
	drive	×		×			×	
	ride	×		×			×	
	bite	×			×			×
	forget		×			×		×

 $\textbf{Concept:} \quad \langle \{bite\}, \{XaiC~XiCn, XaiC~XiC, X~Xn \} \rangle$

 Concept: A set of objects and a set of attributes, all objects have in common exactly these attributes, all attributes are shared by exactly these objects.

		BSE~PPART		BSE~PST			PST~PPART	
Context:		$X_{aiC} \sim X_{iC\eta}$	$X_{\epsilon}C_{\sim}X_{b}C_{\eta}$	$X_{\mathrm{arC}} \sim_{X ext{avC}}$	$X_{\rm arC} \sim X_{\rm IC}$	$X_{\epsilon C} \cdot X_{bC}$	$\chi_{\partial \Omega C} \chi_{IC\eta}$	$^{t\!i}X^{\sim}X$
	drive	×		×			×	
	ride	×		×			×	
	bite	×			×			×
	forget		×			×		×

 $\textbf{Concept:} \qquad \left< \{ forget \}, \{ X \epsilon C \text{--} X \upsilon C \mu, X \epsilon C \text{--} X \upsilon C, X \text{--} X \mu \} \right>$

How to model IC system as lattices

Formal concept analysis: lattice

► Lattice: Set of concepts ordered by inclusion: $\langle x, y \rangle < \langle x_1, y_1 \rangle$ iff $x \subset x_1 \Leftrightarrow y \supset y_1$

Formal concept analysis: lattice

- ► Lattice: Set of concepts ordered by inclusion: $\langle x, y \rangle < \langle x_1, y_1 \rangle$ iff $x \subset x_1 \Leftrightarrow y \supset y_1$
- ► For legibility, we usually omit the **infimum** (but not the **supremum**) and label nodes without repeating information.

Formal concept analysis: lattice

- ► Lattice: Set of concepts ordered by inclusion: $\langle x, y \rangle < \langle x_1, y_1 \rangle$ iff $x \subset x_1 \Leftrightarrow y \supset y_1$
- ► For legibility, we usually omit the **infimum** (but not the **supremum**) and label nodes without repeating information.
- ► This reads like a monotonic multiple inheritance hierarchy.

Table of Contents

- 1. Specificities of this approach
- 2. Background on Inflection Classes
- 3. How to model IC system as lattices
- 4. Towards a typology of IC lattices

Datasets

- ► Data: Paradigm tables contain phonemically transcribed forms.
- ► English: CELEX2 dataset (Baayen, Piepenbrock, and Gulikers, 1995), with partial manual validation (6064 verbal entries).
- ► French: Flexique (Bonami, Caron, and Plancq, 2014) (5258 verbal entries).

The lattices

Excerpt of the English data for: bite, forget, beget, ride, drive, abide

The lattices

401410001011410100000001011140140100	иинники и колоники и к	
burn sport device of eaver device of eaver heaver heaver heaver bend spect brind spring brind sprind spring brind spring brind spring brind spring brind spri	sings sings ings ings ings ings ings ing	tread tread and tread tread treat tr

The lattices

reproved 20 cover(2) advert(1) fabricable (1)prove(1)

aftre barrent in the second se

Identical structure

Canonical inflectional classes realize the same morphosyntactic or morphosemantic distinctions (they are of the same structure). Corbett (2009), criterion 2

• **Defective** classes might otherwise be identical to other microclasses and thus be placed higher in the hierarchy.

Identical structure

Canonical inflectional classes realize the same morphosyntactic or morphosemantic distinctions (they are of the same structure). Corbett (2009), criterion 2

- **Defective** classes might otherwise be identical to other microclasses and thus be placed higher in the hierarchy.
- Overabundant classes might share these patterns with other microclasses, and thus be placed lower in the hierarchy.

Chains and atoms

► An IC system that only deviates from the canonical ideal by presenting overabundance and/or defectivity can take the form of a **chain**.

Chains and atoms

- ► An IC system that only deviates from the canonical ideal by presenting overabundance and/or defectivity can take the form of a **chain**.
- atoms : nodes that are right above the infimum.
 Because of overabundance and defectivity, microclasses are not always atoms.

Microclasses

Proportion of microclasses that are atoms

Pattern sharing

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

► Canonical situation: a partition of microclasses (plus supremum).

Canonical inflection classes

Pattern sharing

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

```
Corbett (2009), criterion 1
```

- ► Canonical situation: a partition of microclasses (plus supremum).
- ► The maximum possible lattice given some atoms corresponds to the power set over the atoms.

Maximum pattern sharing across classes

Towards a typology of IC lattices

Pattern sharing: node density

 We evaluate the amount of sharing across microclasses by counting the number of nodes in the lattice.

Towards a typology of IC lattices

Pattern sharing: structural properties

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

► **Overlapping**: A node of the lattice that inherits patterns from at least two nodes that are not themselves in hierarchical relation.

Pattern sharing: structural properties

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

- ► **Overlapping**: A node of the lattice that inherits patterns from at least two nodes that are not themselves in hierarchical relation.
- ► Heteroclite: A node with overlapping for patterns of distinct pairs of cells.

Pattern sharing: structural properties

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

Corbett (2009), criterion 1

- ► **Overlapping**: A node of the lattice that inherits patterns from at least two nodes that are not themselves in hierarchical relation.
- ► Heteroclite: A node with overlapping for patterns of distinct pairs of cells.
- Sharing without overlapping is tree-shaped

Pattern sharing: structural properties

In the canonical situation, forms differ as consistently as possible across inflectional classes, cell by cell.

```
Corbett (2009), criterion 1
```

- **Overlapping**: A node of the lattice that inherits patterns from at least two nodes that are not themselves in hierarchical relation.
- ► Heteroclite: A node with overlapping for patterns of distinct pairs of cells.
- ► Sharing without overlapping is tree-shaped

Microclasses

For each microclass: is it canonical, part of a chain, a tree or overlapping ?

Data	Microclasses	Canonical	Chain	Tree	Overlapping
English French	$\begin{array}{c} 125 \\ 109 \end{array}$	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	$\frac{3}{2}$	$\begin{array}{c} 122 \\ 107 \end{array}$

A quantitative interpretation: overlapping

- ► A tree has exactly one parent for each node (indegree: 1), and 0 for its root.
- We quantify the difference between the shape of our lattices and that of a tree by counting the mean indegree (with scaling, assuming constant number of nodes).
- ► The English datasets has 227 more arcs than if it was a tree.
- ▶ The French datasets has 11230 more arcs than if it was a tree.

Conclusion

► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► Heteroclisis and more generally multiple inheritance (overlapping) seem to be the general case rather than the exception.

- ► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► Heteroclisis and more generally multiple inheritance (overlapping) seem to be the general case rather than the exception.
 - Inflection class systems, even when traditionally analyzed as trivial, are more faithfully represented by lattices than by other classification structures.

- ► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► Heteroclisis and more generally multiple inheritance (overlapping) seem to be the general case rather than the exception.
 - Inflection class systems, even when traditionally analyzed as trivial, are more faithfully represented by lattices than by other classification structures.
- ► At the same time, systems we studied are far less complex than the theoretical maximum.

- ► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► Heteroclisis and more generally multiple inheritance (overlapping) seem to be the general case rather than the exception.
 - Inflection class systems, even when traditionally analyzed as trivial, are more faithfully represented by lattices than by other classification structures.
- ► At the same time, systems we studied are far less complex than the theoretical maximum.
 - ► This converges with research on inflectional complexity, see Carstairs-McCarthy (1991), Ackerman and Malouf (2015) and Blevins (2006).

- ► This view of IC is comprehensive and belongs to the **abstractive** perspective on morphology (Blevins, 2006).
- ► Heteroclisis and more generally multiple inheritance (overlapping) seem to be the general case rather than the exception.
 - Inflection class systems, even when traditionally analyzed as trivial, are more faithfully represented by lattices than by other classification structures.
- ► At the same time, systems we studied are far less complex than the theoretical maximum.
 - ► This converges with research on inflectional complexity, see Carstairs-McCarthy (1991), Ackerman and Malouf (2015) and Blevins (2006).
- Perspective: use our tools on a wide range of data to elaborate a typological analysis.

Towards a typology of IC lattices

Thank You !

References I

Ackerman, Farrell and Robert Malouf (2015). "The No Blur Principle Effects as an Emergent Property of Language Systems". In: *Proceedings of the 41st Annual Meeting of the Berkeley Linguistics Society.* Albright, Adam and Bruce Hayes (2006). "Modeling productivity with the gradual learning algorithm: The problem of accidentally exceptionless generalizations". In: *Gradience in grammar: Generative*

perspectives, pp. 185–204.

- Aronoff, M. (1994). *Morphology by Itself: Stems and Inflectional Classes*. Linguistic inquiry monographs. MIT Press. ISBN: 9780262510721.
- Baayen, R, R Piepenbrock, and L Gulikers (1995). *CELEX2*. Philadelphia: Linguistic Data Consortium. Bank, Sebastian (2013-2016). *Concepts (python3 package)*. Vo.7.10. URL:

https://github.com/xflr6/concepts.

- Beniamine, Sarah, Olivier Bonami, and Benoît Sagot (2015). "Information-theoretic inflectional classification". International Quantitative Morphology Meeting 1 (IQMM1).
- Blevins, James P. (2006). "Word-based morphology". In: *Journal of Linguistics* 42 (03), pp. 531–573. ISSN: 1469-7742. DOI: 10.1017/S0022226706004191.
- Bonami, Olivier, Gauthier Caron, and Clément Plancq (2014). "Construction d'un lexique flexionnel phonétisé libre du français". In: Actes du quatrième Congrès Mondial de Linguistique Française. Ed. by Franck Neveu et al., pp. 2583–2596. DOI: 10.1051/shsconf/20140801223.
- Brown, D. and A. Hippisley (2012). Network Morphology: A Defaults-based Theory of Word Structure. Cambridge Studies in Linguistics. Cambridge University Press. ISBN: 9781107005747. DOI: 10.1017/CB09780511794346.

References II

- Brown, Dunstan and Roger Evans (2012). "Morphological complexity and unsupervised learning: validating Russian inflectional classes using high frequency data". In: (*Ir*)*regularity, analogy and frequency, selected papers from the 14th International morphology meeting, Budapest, 13?16 May 2010.* Ed. by Kiefer Ference, Mária Ladányi, and Péter Siptár. Current Issues in Morphological Theory. Amsterdam: John Benjamins Publishing Co., pp. 135–162. DOI: 10.1075/cilt.322.07bro.
- Carstairs-McCarthy, Andrew (1991). "Inflection classes: Two questions with one answer." In: *Paradigms: The Economy of Inflection*. Ed. by F. Plank. Empirical Approaches to Language Typology [EALT]. De Gruyter, pp. 213–253. ISBN: 9783110889109. DOI: 10.1515/9783110889109.213.
- (1994). "Inflection Classes, Gender, and the Principle of Contrast". In: Language 70.4, pp.737–788.
 ISSN: 00978507. DOI: 10.2307/416326.
- Chomsky, N. and M. Halle (1968). *The Sound Pattern of English*. Studies in language. New York, NY: Harper & Row.
- Corbett, Greville G. (2009). "Canonical Inflectional Classes". In: Selected Proceedings of the 6th Décembrettes: Morphology in Bordeaux. Ed. by Gilles Boyé Fabio Montermini and Jesse Tseng. Vol. 1-11. Somerville, MA, USA: Cascadilla Proceedings Project.
- Corbett, Greville G. and Norman M. Fraser (1993). "Network Morphology: a DATR account of Russian nominal inflection". In: *Journal of Linguistics* 29 (01), pp. 113–142. ISSN: 1469-7742. DOI: 10.1017/S0022226700000074.
- Corbett, Greville G and Norman M Fraser (2002). "Default genders". In: *Mouton Classics: From Syntax to Cognition. From Phonology to Text*, p. 297.
- Dressler, Wolfgang U. and Anna M. Thornton (1996). "Italian Nominal Inflection". In: Wiener Linguistische Gazette 55-57, pp. 1–26.

References III

Flickinger, Dan (1987). "Lexical rules in the hierarchical lexicon". PhD thesis. Stanford University.
Frisch, Stefan (1997). "Similarity and frequency in phonology". PhD thesis. Northwestern University.
Ganter, Bernhard (1998). Formal concept analysis : Mathematical foundations. 1st ed. Springer-Verlag. ISBN: 3540627715. URL: http://www.worldcat.org/isbn/3540627715.
Ginzburg, Jonathan and Ivan Sag (2000). Interrogative investigations. Stanford: CSLI publications.
Wille, Rudolf (1984). Finite distributive lattices as concept lattices. Techn. Hochsch., Fachbereich Math. Towards a typology of IC lattices

Multiple inheritance hierachies

 Phonological hierarchies of natural classes (Chomsky and Halle, 1968; Frisch, 1997).

Multiple inheritance hierachies

- Phonological hierarchies of natural classes (Chomsky and Halle, 1968; Frisch, 1997).
- ► HPSG type hierarchies (Flickinger, 1987; Ginzburg and Sag, 2000).

Multiple inheritance hierachies

- Phonological hierarchies of natural classes (Chomsky and Halle, 1968; Frisch, 1997).
- ► HPSG type hierarchies (Flickinger, 1987; Ginzburg and Sag, 2000).
- ► Nodes are ordered: (semi)-Lattices.

Towards a typology of IC lattices

Comparison with default hierarchies

► Default hierarchies (Brown and Hippisley, 2012, ex. from Corbett and Fraser, 2002).

Comparison with default hierarchies

- ► Default hierarchies (Brown and Hippisley, 2012, ex. from Corbett and Fraser, 2002).
- Monotonic hierarchies: Attributes shared by all descendants, all relevant sets are explicit.

