A computational approach to the abstraction of morphopholonogical alternations

Sacha Beniamine Laboratoire de Linguistique Formelle, Université Paris Diderot

Typologie et modélisation des systèmes morphologiques Jeudi 12 Janvier 2017

A computational abstractive approach

- Item and Pattern Morphology : Morphology is modeled directly in terms of surface alternations between wordforms.
 - Term due to Blevins2016; preferable to the ambiguous 'Word and Paradigm'
 - Abstractive in Blevins, 2006's sense.
- Items are wordforms rather than subword units.
- The alternation patterns allow us to classify lexemes' behavior.
- Extracting patterns automatically without prior knowledge on the language's profile is a fundamental step for instrumented typology

Finding alternation patterns

- We describe an automated way to find morphopholonogical alternations cross-linguistically from surface forms.
- ► These take the form of bidirectionnal alternation patterns : X alternates with Y in the context Z written "X = Y / Z"
- They can be used to study various alternations

Inflection: English past

 $acted' \Rightarrow act' \Rightarrow det / X+[bdpt]_$

Finding alternation patterns

- We describe an automated way to find morphopholonogical alternations cross-linguistically from surface forms.
- ► These take the form of bidirectionnal alternation patterns : X alternates with Y in the context Z written "X = Y / Z"
- They can be used to study various alternations

Finding alternation patterns

- We describe an automated way to find morphopholonogical alternations cross-linguistically from surface forms.
- ► These take the form of bidirectionnal alternation patterns : X alternates with Y in the context Z written "X = Y / Z"
- They can be used to study various alternations

Variation and Change: French and Morisien

'judiciaire' \rightleftharpoons 'zidisier' /zydisjɛʁ/ \rightleftharpoons 'zidisjɛơ/ \Longrightarrow $3y_k \rightleftharpoons zi_\sigma / X^*_X_+$ introduction

- This work was developped with inflectional morphology in mind.
 - Investigations on Inflection Classes (my PhD topic)
 - Studying the Paradigm Cell Filling Problem
- For this purpose, we were considering all possible pairwise alternations in large inflectional paradigms
 - ► Here: 7 cells, 42 relations.
- ► We needed a system able to find patterns in a reasonable time for a large number of alternations.

Table of Contents

1. Presentation of the issue

- 2. Previous work
- 3. The algorithm
- 4. Evaluation

- ► Input :
 - ► Pairs of forms involved in some morphopholonogical alternation ex: /amɛn/ ⇒ /amøne/
 - A definition of phonemes in distinctive features ex: m = [+son -syl +cons +cont +nas -haut -arr +ant -cor +vois]

- ► Input :
 - ► Pairs of forms involved in some morphopholonogical alternation ex: /amεn/ ⇒ /amøne/
 - A definition of phonemes in distinctive features ex: m = [+son -syl +cons +cont +nas -haut -arr +ant -cor +vois]

- ► Input :
 - ► Pairs of forms involved in some morphopholonogical alternation ex: /amɛn/ ⇒ /amøne/
 - A definition of phonemes in distinctive features ex: m = [+son -syl +cons +cont +nas -haut -arr +ant -cor +vois]

- Input :
 - Pairs of forms involved in some morphopholonogical alternation ex: $|am\epsilon n| \rightleftharpoons |amøne|$
 - A definition of phonemes in distinctive features ex: m = [+son -syl +cons +cont +nas -haut -arr +ant -cor +vois]
- Output: a list of alternation patterns

Patterns can be deduced from alignments

A pattern is a representation of alternating and constant material in a pair of forms.

prs.1sg 'I bring'	а	m	3	n	
prs.2pl 'you bring'	а	m	Ø	n	e

Patterns can be deduced from alignments

A pattern is a representation of alternating and constant material in a pair of forms. It can be deduced from an alignment of the forms

Finding the optimal local alignment

► Suffixal alternations require left alignment (French):

 PRS.1SG 'I bring'
 a
 m
 ε
 n

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |

Finding the optimal local alignment

Suffixal alternations require left alignment (French):
 PRS.1SG 'l bring' a m ε n

prs.2pl 'you bring' a m ø n e

Prefixal alternations require a right alignment (Swahili):

FUT.1SG 'I will want'	n	i	t	а	t	а	k	а
PRS.2PL 'you want'		m	n	а	t	а	k	а

Finding the optimal local alignment

- Suffixal alternations require left alignment (French):
 PRS.1SG 'I bring' a m ε n
 | | | |
 PRS.2PL 'you bring' a m Ø n e
- Prefixal alternations require a right alignment (Swahili):
 - FUT.1SGʻlwillwant'n itataka | | | | | | | PRS.2PLʻyouwant'mnataka
- ► More complex alternations can require arbitrary alignments :

prs.1sg 'I buy'		m	i	х	а	r			а	n	(Persian)
pas.perf.1sg 'I bough	nt'			х	а	r	i	d	а	n	
PFV.3sG 'he wrote'			k	a:	t	a	b	a:			(Arabic)
IPF.3sG 'he writes'	j	u	k	a:	t	i	b	u			

Finding the optimal global alignment

► There can be several optimal local alignments

Alignments for 'baba' and 'ba'

Alignment					Pattern
	b	а	b	а	
(i) Prefix	_	_	b	а	$\epsilon \rightleftharpoons ba / ba$
(ii) Suffix	b	а	_	_	$\epsilon \rightleftharpoons ba / ba_{-}$
(iii) Infix	b	_	_	а	$\epsilon \rightleftharpoons ab / b_a$

Finding the optimal global alignment

- There can be several optimal local alignments
- Choosing the most appropriate alignment requires cross-lexeme comparisons

A Ir	ıfix -ab-	ges.	C S	Suffix -ba		
	inix us					
SG	PL	SG	PL		SG	PL
ba	b <mark>aba</mark>	ba	baba		ba	ba <mark>ba</mark>
to	tabo	to	bato		to	to <mark>ba</mark>
ri	rabi	ri	bari		ri	ri <mark>ba</mark>
su	sabu	su	basu		su	suba
ne	nabe	ne	bane		ne	ne <mark>ba</mark>

Morphology beyond affixes

- We saw that non concatenative processes can require complex alignments,
- ► So do multidimentional alternations, e.g. in Zenzontepec Chatino
 - ► In the following example, inflection relies on both segmental and tonal alternations.
 - It is important to be able to capture both with the same system.

	'break'	'drench'	'slide'	
РОТ	ku ⁰ ki ⁰ tę¹?	ku ⁰ ki ⁰ li ⁰	ki ⁰ ki ⁰ li ⁰	
CPL	nka ⁰ ki ¹ tę ² ?	nka ⁰ ki ⁰ li ⁰	nku ⁰ ki ⁰ ti ⁰	

Table of Contents

- 1. Presentation of the issue
- 2. Previous work
- 3. The algorithm
- 4. Evaluation

The PCFP as a NLP problem

- When constructing lexical resources, the paradigms extracted from corpora are usually sparse
- The Paradigm Cell Filling Problem arises in this context Finding alternation rules provides a way to fill-in the missing forms.
- ► In NLP, this is called reinflection Cotterell et al., 2016.
- Symbolic solutions have various contributions to the alignment problem.
- ► Neural networks perform best (Kann and Schütze, 2016).
- Because of distinct goals, none provide the type of generalisations we need.

Studies of inflectional morphology

- Much previous studies of Inflectional structure (e.g. Ackerman and Malouf 2013; Stump and Finkel 2013) works from hand-designed classifications.
- Neural networks have been used too as a model of the PCFP (Malouf, 2016).
- The main contribution to automated inference of patterns is the Minimal Generalization Learner
 - ► Simulate the behavior of speakers in a wug test (Albright and Hayes, 2002, 2003, 2006)
 - Generalize patterns incrementally and retain all intermediate generalizations.
 - This is both too slow to be applied to large inflection systems and contrary to our need to find one pattern per pair of forms.
- Following Albright & Hayes, several studies infer alternation patterns with strategies devised for specific datasets (Sims, 2015; Albright and Hayes, 2002; Bonami and Boyé, 2014; Bonami and Beniamine, 2015)

Alignment strategies in previous work

- ► Transducer intersection (Ahlberg, Forsberg, and Hulden, 2014)
- Hard coded linguistically motivated alignment
 - Sims (2015): Suffixation
 - ► Albright and Hayes (2002): A single change, with a bias:

Suffixation > Prefixation > Stem-internal alternation (ablaut/infixation)

- Bonami and Boyé (2014) : No stem-internal alternation, with a bias: Suffixation > Prefixation > Circumfixation
- Bonami and Beniamine (2015):Suffixation with a potential stem-internal alternation
- Alignment that minimizes edit distance:
 - Durrett and DeNero, 2013 : weighted according to cross-lexeme comparisons.
 - ► Albright and Hayes, 2006 : weighted according to phonological similarity.

Table of Contents

- 1. Presentation of the issue
- 2. Previous work

3. The algorithm

4. Evaluation

General strategy

Strategy in 3 steps:

- 1. Align forms locally to find patterns.
- 2. Generalize by merging patterns with the same structural alternation.
- 3. Select the patterns which perform best across lexemes.

- For any pair of forms, find the set of alignments that minimize a weighted edit distance
- We define three operations with costs :

PRS.1SG 'I bring'	а	m	3	n	
PRS.2PL 'you bring'	а	m	Ø	n	e

- ► For any pair of forms, find the set of alignments that minimize a weighted edit distance
- We define three operations with costs :
 - ► COPY is free

prs.1sg 'I bring'	а	m	3	n	
prs.2pl 'you bring'	а	m	Ø	n	e
Operation	С	С		С	
Cost	0	0		0	

- For any pair of forms, find the set of alignments that minimize a weighted edit distance
- We define three operations with costs :
 - ► COPY is free
 - ► INSERTION/DELETION costs 1

PRS.1SG 'I bring'	а	m	3	n	
prs.2pL 'you bring'	а	m	Ø	n	e
Operation	С	С		С	I
Cost	0	0		0	1

- For any pair of forms, find the set of alignments that minimize a weighted edit distance
- We define three operations with costs :
 - COPY is free
 - ► INSERTION/DELETION costs 1
 - ► SUBSTITUTION costs 2 (equivalent to insert + delete)

prs.1sg 'I bring'	а	m	3	n	
prs.2pl 'you bring'	а	m	Ø	n	e
Operation	С	С	S	С	I
Cost	0	0	2	0	1

From alignment to patterns

 Find all best alignments and deduce alternation patterns (back to an imaginary language) :

Alignment					Distance	Pattern
	b	а	b	а		
(i) Prefix	_	_	b	а	2	$\epsilon \rightleftharpoons ba / ba$
(ii) Suffix	b	а	_	_	2	$\epsilon \rightleftharpoons ba / ba_{-}$
(iii) Infix	b	_	_	а	2	$\epsilon \rightleftharpoons ab / b_a$

• List the set of patterns for each alternation:

SG	PL	Patterns
ba	bab a	$\{\epsilon \rightleftharpoons ba / _ba, \epsilon \rightleftharpoons ba / ba_, \epsilon \rightleftharpoons ab / b_a\}$
to	tabo	$\{\epsilon \rightleftharpoons ab / t_o\}$
ri	rabi	$\{\epsilon \rightleftharpoons ab / r_i\}$
su	sabu	$\{\epsilon \rightleftharpoons ab / s_u\}$

Merging patterns generalizes the context

- Fuse patterns with identical structural alternations
- This step attempts to find phonological restrictions on contexts by generalizing sets of phonemes to their smallest natural classes.

$$\left. \begin{array}{l} \epsilon \rightleftharpoons ab / b_a \\ \epsilon \rightleftharpoons ab / t_o \\ \epsilon \rightleftharpoons ab / r_i \\ \epsilon \rightleftharpoons ab / s_u \end{array} \right\} \epsilon \rightleftharpoons ab / C_V$$

 A structural alternation can be a phonological operation such as lengthening

$$\left. \begin{array}{c} a \rightleftharpoons a: / \dots \\ i \rightleftharpoons i: / \dots \end{array} \right\} \ [aiu] \rightleftharpoons [a:i:u:] / \dots$$

 A structural alternation can be a phonological operation such as lengthening

```
A real example (Arabic verbs)
[aiu]_na ⇐ [a:i:u:]_i:
imp.act.2p.f ⇐ imp.act.2s.f
```

- A structural alternation can be a phonological operation such as lengthening
- ► However, this only works if there is a true phonological naturality

Spelling	Sound change	Example
$\acute{oi} ightarrow \acute{o}$	[o:] (no change)	$c \acute{o} ir ightarrow c \acute{o} ra$
$ei \rightarrow ea$	$[\epsilon] \rightarrow [a]$	greim \rightarrow greama
$\acute{ei} ightarrow \acute{ea}$	[e:] (no change)	$tincéir \rightarrow tincéara$
$i \rightarrow ea$	$[I] \rightarrow [a]$	$rith \rightarrow reatha$
$(a)i \rightarrow (a)io$	[i:] (no change)	feadaíl $ ightarrow$ feadaíola
$ui \rightarrow o$	$[I] \rightarrow [\mathfrak{I}]$	$cuid \rightarrow coda$
$io \rightarrow ea$	$[I] \rightarrow [a]$	$lios \rightarrow leas$

Irish: broadening and attenuation, from Carnie, 2008

(25)

Broadening

- A structural alternation can be a phonological operation such as lengthening
- ► However, this only works if there is a true phonological naturality

Spelling	Sound change	Example
$ea \rightarrow i$	$[a] \rightarrow [I]$	fear \rightarrow fir
$ea \rightarrow ei$	$[a] \rightarrow [\varepsilon]$	sceach \rightarrow sceiche
$\acute{e}a \rightarrow \acute{e}i$	[e:] (no change)	$\acute{e}an \rightarrow \acute{e}in$
$ia \rightarrow \acute{e}i$	$[i\mathfrak{d}] \rightarrow [e:]$	$iasc \rightarrow \acute{e}isc$
$io \rightarrow i$	[i:] (no change)	$iol \rightarrow il$
$io \rightarrow i$	$[i:]/[I]/[U] \rightarrow [I]$	fionn \rightarrow finn
$iu \rightarrow i$	$[\upsilon] \to [\imath]$	$fliuch \rightarrow fliche$

Irish: broadening and attenuation, from Carnie, 2008

(24)

Attenuation

• Score patterns using the harmonic mean of their coverage and accuracy

- Score patterns using the harmonic mean of their coverage and accuracy
 - coverage: proportion of lexemes which are candidate for this pattern.

lexemes to which the pattern is applicable total lexemes

- Score patterns using the harmonic mean of their coverage and accuracy
 - coverage: proportion of lexemes which are candidate for this pattern.

lexemes to which the pattern is applicable total lexemes

► accuracy: proportion of candidates actually instantiating the pattern.

lexemes derived correctly

lexemes to which the pattern is applicable

- Score patterns using the harmonic mean of their coverage and accuracy
 - coverage: proportion of lexemes which are candidate for this pattern.

lexemes to which the pattern is applicable total lexemes

► accuracy: proportion of candidates actually instantiating the pattern.

lexemes derived correctly

lexemes to which the pattern is applicable

► For each lexeme, decide on the pattern with the highest score

Al	ignm	nent			Pattern	Coverage	Accuracy	Score
	b	а	b	а				
(i) Prefix	_	_	b	а	$\epsilon \rightleftharpoons ba / ba$	1/4	1/1	0.4
(ii) Suffix	b	а	_	_	$\epsilon \rightleftharpoons ba / ba_{-}$	1/4	1/1	0.4
(iii) Infix	b	_	_	а	$\epsilon \rightleftharpoons ab / C_V$	4/4	4/4	1.0

More subtle alignments

Simple edit distances are not always enough to choose the best alignment :

NOM.sg ʻchihuahua' (čivav)	t	ſ	I	v	а	f		(Czech)
GEN.PL 'chihuahua' (čivava)	t	ſ	I	V	а	V	a	
Operation	С	С	С	С	С	S	I	
Cost	0	0	0	0	0	2	1	=3

More subtle alignments

Simple edit distances are not always enough to choose the best alignment :

NOM.SG 'chihuahua' (čivav)	t	ſ	I	v			а	f	(Czech)
gen.pL 'chihuahua' (čivava)	t	ſ	I	V	a	V	а		
Operation	С	С	С	С	I	Ι	С	Ι	
Cost	0	0	0	0	1	1	0	1	=3

- ► We use phonological similarity as a weight (Frisch, Pierrehumbert, and Broe, 2004; Albright and Hayes, 2003)
 - ► SUBSTITUTION of segments costs 1- phonological similarity.

$$sim(a, b) = \frac{|classes(a) \cap classes(b)|}{|classes(a) \cup classes(b))}$$

Copy is a substitution and costs 0, as sim(a, a) = 1.

- We use phonological similarity as a weight (Frisch, Pierrehumbert, and Broe, 2004; Albright and Hayes, 2003)
 - ► SUBSTITUTION of segments costs 1- phonological similarity.

Czech, 'chihuahua', NOM.SG čivav ≓ GEN.PL čivava

- We use phonological similarity as a weight (Frisch, Pierrehumbert, and Broe, 2004; Albright and Hayes, 2003)
 - ► SUBSTITUTION of segments costs 1 phonological similarity.
 - ► INSERTION is a parameter (here 0.5)

Czech, 'chihuahua', NOM.SG čivav ≓ GEN.PL čivava

- We use phonological similarity as a weight (Frisch, Pierrehumbert, and Broe, 2004; Albright and Hayes, 2003)
 - ► SUBSTITUTION of segments costs 1 phonological similarity.
 - ► INSERTION is a parameter (here 0.5)

Table of Contents

- 1. Presentation of the issue
- 2. Previous work
- 3. The algorithm
- 4. Evaluation

Evaluation: Qualitative

The algorithm does infer transfixation patterns

Evaluation: Quantitative (I)

- Can the patterns be used for prediction ?
- ► 10-fold cross-validation
- ► Training :
 - Learn patterns on 90% of pairs.
 - Define a form's **class** as the set of patterns applicable to it.
 - Compute probabilities of the form *P*(pattern|class).
- ► Test :
 - Look at single forms for the other 10%.
 - Find the class for each form.
 - Predict by maximizing *P*(pattern|class).
 - ► If the class is unknown, or the predicted form is false, fail.

Evaluation

Evaluation: Quantitative (II)

	Chatino	French	Portuguese	Arabic
train size	351	4689	1791	855
test size	39	521	199	95
Left aligned (suffix)	24	93	92	48
Right aligned (prefix)	54	22	17	0.4
Albright and Hayes, 2002	55	93	94	49
Simple edit distances	58	93	-	87
Similarity based edit distances	58	93	93	87

Conclusion

- ► We presented a fully implemented algorithm to automatise the inference of alternation patterns.
 - it's open source: http://drehu.linguist.univ-paris-diderot.fr/qumin/
- Crucial properties :
 - Generalizes from fully specified form pairs to alternation patterns, with a phonologically constrained context.
 - ► Fast enough to perform on numerous series of pairs (cf. inflection).
 - Not limited to affixal material.
 - Does not require prior knowledge on the language's profile.
 - Optimizes the patterns globally across lexemes as well as locally.
 - ► Known patterns can be applied to unknown forms to predict new forms.
- It has already been used in previous works Beniamine and Bonami, 2016; Bonami and Beniamine, 2016.

Evaluation

Thank You !

References I

- Ackerman, Farrell and Robert Malouf (2013). "Morphological organization: The low conditional entropy conjecture." In: Language 89.3, pp. 429–464. DOI: 10.1353/lan.2013.0054.
- Ahlberg, Malin, Markus Forsberg, and Manstio Hulden (2014). "Semi-supervised learning of morphological paradigms and lexicons". In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, Gothenburg, Sweden 26–30 April 2014, pp. 569–578. ISBN: 978-1-937284-78-7. DOI: 10.3115/v1/E14-1060.
- Albright, Adam and Bruce Hayes (2002). "Modeling English Past Tense Intuitions with Minimal Generalization". In: Proceedings of the ACL-02 Workshop on Morphological and Phonological Learning -Volume 6. MPL '02. Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 58–69. DOI: 10.3115/1118647.1118654.
- (2003). "Rules vs. analogy in English past tenses: A computational/experimental study". In: *Cognition* 90, pp. 119–161. DOI: 10.1016/S0010-0277(03)00146-X.
- (2006). "Modeling productivity with the gradual learning algorithm: The problem of accidentally exceptionless generalizations". In: Gradience in grammar: Generative perspectives, pp. 185–204.
- Beniamine, Sarah and Olivier Bonami (2016). A comprehensive view on inflectional classification. Annual Meeting of the Linguistics Association of Great Britain (LAGB). York.
- Blevins, James P. (2006). "Word-based morphology". In: *Journal of Linguistics* 42 (03), pp. 531–573. ISSN: 1469-7742. DOI: 10.1017/S0022226706004191.
- Bonami, Olivier and Sarah Beniamine (2015). "Implicative structure and joint predictiveness". In: Word Structure and Word Usage. Proceedings of the NetWordS Final Conference. Ed. by Vito Pirelli, Claudia Marzi, and Marcello Ferro.

References II

Bonami, Olivier and Sarah Beniamine (2016). "Joint predictiveness in inflectional paradigms". In: *Word Structure* 9. Ed. by Farrell Ackerman and Robert Malouf, pp. 156–182. DOI: 10.3366/word.2016.0092.

Bonami, Olivier and Gilles Boyé (2014). "De formes en thèmes". In: *Foisonnements morphologiques. Etudes en hommage à Françoise Kerleroux*. Ed. by Florence Villoing, Sarah Leroy, and Sophie David. Presses Universitaires de Paris Ouest, pp. 17–45.

Carnie, Andrew (2008). Irish nouns: a reference guide. Oxford University Press.

- Cotterell, Ryan et al. (2016). "The SIGMORPHON 2016 shared task—morphological reinflection". In: Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology. Association for Computational Linguistics. Berlin, Germany, pp. 10–22.
- Durrett, Greg and John DeNero (2013). "Supervised Learning of Complete Morphological Paradigms". In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta, Georgia: Association for Computational Linguistics, pp. 1185–1195.

Frisch, Stefan A, Janet B Pierrehumbert, and Michael B Broe (2004). "Similarity avoidance and the OCP". In: Natural Language & Linguistic Theory 22.1, pp. 179–228. DOI:

10.1023/B:NALA.0000005557.78535.3c.

Kann, Katharina and Hinrich Schütze (2016). "MED: The LMU system for the SIGMORPHON 2016 shared task on morphological reinflection". In: *ACL 2016*, p. 62.

Malouf, Robert (2016). "Deep learning for abstractive morphology". In: Computational methods for descriptive and theoretical morphology, 17th International Morphology Meeting. Vienna, Austria.

Evaluation

References III

Sims, Andrea (2015). Inflectional Defectiveness. Cambridge University Press. DOI: 10.1017/CB09781107053854.

Stump, G. and R.A. Finkel (2013). *Morphological Typology: From Word to Paradigm*. Cambridge Studies in Linguistics. Cambridge University Press. ISBN: 9781107029248. DOI: 10.1017/CB09781139248860.

Evaluation: Quantitative

	Chatino	French	Portuguese	Arabic
train size	351	4689	1791	855
test size	39	521	199	95
Left aligned (suffix)	24	93	92	48
(num. of patterns)	229	26	17	409
Right aligned (prefix)	54	22	17	0.4
(num. of patterns)	54	3612	1467	464
Albright and Hayes, 2002	55	93	94	49
(num. of patterns)	73	26	17	397
Simple edit distances	58	93	-	87
(num. of patterns)	55	26	-	22
Similarity based edit distances	58	93	93	87
(num. of patterns)	54	26	16	23

Evaluation

A few patterns for English verbs

lexeme DRIVE RIDE BITE FORGET	PAST XəʊC \rightleftharpoons XıCņ XəʊC \rightleftharpoons XıCņ XəʊC \rightleftharpoons XıCņ X \rightleftharpoons Xņ X \rightleftharpoons Xņ X \rightleftharpoons Xn	PAST PAST $X \Rightarrow UC_ \Rightarrow XaiCz$ $X \Rightarrow UC \Rightarrow XaiCz$ $XiC \Rightarrow XaiCs$ $XDC \Rightarrow XcCs$	PRES3S \rightleftharpoons PRESNOT3S Xz \rightleftharpoons X Xz \rightleftharpoons X Xs \rightleftharpoons X Xs \rightleftharpoons X Xs \rightleftharpoons X	PPART \Rightarrow PRESNOT3S XIC $\eta \Rightarrow$ XaIC XIC $\eta \Rightarrow$ XaIC XIC $\eta \Rightarrow$ XaIC XIC $\eta \Rightarrow$ XaIC XDC $\eta \Rightarrow$ XEC	PPART → PRESPART XIC η → XaIC I η XIC η → XaIC I η XIC η → XaIC I η XDC η → XcC I η
FORGET	X — Xņ	$XDC \leftarrow XECS$	$\lambda s \leftarrow \lambda$	$XDCh \leftarrow XEC$	λουἡ ← λευιή

lexeme	past⇔presnot3s	PPART⇔PRES3S	PRESNOT3S⇔PRESPART	PAST⇔PRESPART	PRES3S⇔PRESPART
DRIVE	XəʊC ⇔ XaıC	XıCņ ⇔ XaıCz	X ⇔ Xıŋ	XəʊC ≓ XaıCıŋ	Xz ⇔ Xıŋ
RIDE	Хәʊ ⇔ Хаı	XıCņ ≓ XaıCz	X ⇔ Xıŋ	XəʊC ≓ XaıCıŋ	Xz ≓ Xıŋ
BITE	XıC ⇔ XaıC	XıCņ ⇔ XaıCs	X ⇔ Xıŋ	XVt ⇔ XaıtVŋ	Xs ⇔ Xıŋ
FORGET	$X_DC \rightleftharpoons X_EC$	X _D Cņ ≓ XεCs	X ⇄ Xiŋ	XDC ≓ XεCıŋ	Xs ⇔ Xıŋ