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In research on the role of lexical predictability in language comprehension, predictability is
generally defined as the probability that a word is provided as a sentence continuation in
the cloze task (Taylor, 1953), in which subjects are asked to guess the next word of a sen-
tence. The present experiments investigate the process by which subjects generate a cloze
response, by measuring the latency to initiate a response in a version of the task in which
subjects produce a spoken continuation to a visually presented sentence fragment. Higher
probability responses were produced faster than lower probability responses. The latency
to produce a response was also influenced by item constraint: A response at a given level of
probability was issued faster when the context was more constraining, i.e.,, a single
response was elicited with high probability. We show that these patterns are naturally pro-
duced by an activation-based race model in which potential responses independently race
towards a response threshold. Implications for the interpretation of cloze probability as a
measure of lexical predictability are discussed.
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Introduction

Lexical predictability plays an important role in incre-
mental language comprehension. In reading, the eyes
spend less time on a word when it is predictable in its
sentence context than when it is a less predictable but plau-
sible sentence continuation (e.g., Ehrlich & Rayner, 1981;
Smith & Levy, 2013; Staub, 2011). In event-related potential
(ERP) research, the amplitude of the N400 component,
which is elicited by each word of a sentence in both written
and spoken language comprehension, is modulated by a
word’s predictability (e.g., Federmeier & Kutas, 1999;
Kutas & Hillyard, 1984), with N400 amplitude decreasing
as a word becomes more predictable. Thus, we have
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evidence that lexical predictability influences overt pro-
cessing behavior, and we also have direct evidence of the
influence of predictability on the neural processes that
presumably underlie this behavior. Recent reviews of pre-
dictability effects, and discussion of their interpretation,
can be found in Federmeier (2007), Pickering and Garrod
(2007),and Van Petten and Luka (2012). Lexical predictabil-
ity also plays a central role in recent computational models
of sentence processing that have emphasized the condi-
tional probability of a word as a determinant of processing
difficulty (Hale, 2001; Levy, 2008).

In such research, a word’s predictability in a given con-
text is almost always operationalized in terms of cloze
probability (Taylor, 1953). This measure is simply the pro-
portion of participants who provide the word in question
as the next word of the sentence, given the preceding
words. Due to the extensive interest in predictability
effects, and also due to the fact that researchers often con-
trol for predictability when investigating effects of other
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lexical or sentence-level variables, the cloze task has
become one of the most widely used laboratory tasks in
psycholinguistics. In standard practice, a fragment of a sen-
tence is presented in written form to a group of subjects in
a norming session prior to the comprehension experiment
that is the researchers’ main focus. Usually, two distinct
groups of subjects complete the cloze task and the compre-
hension experiment. The subjects in the cloze task are
asked to write the word that seems most likely as the next
word of the sentence, though there is great variability in
instructions, with some researchers asking for the most
natural continuation, the most plausible continuation, the
‘best’ continuation, or the first word that comes to mind.
In the associated comprehension experiment, researchers
usually assess the effect of predictability in one of two
ways: by comparing the processing of a given word in con-
texts in which this word has high or low cloze probability
(as in 1a-b; target words italicized), or by holding the
context constant, and comparing two different words that
have high and low cloze probability in this context (2a-b).
The first of these designs maintains control over lexical
variables, at the cost of contextual variability, while the
second maintains control over the context, at the cost of
lexical variability. On occasion, context and target are fully
crossed (3a-d).

(1) a.The athlete pulled a muscle in his leg during the
competition.
b. Peter says that a muscle in his leg was
bothering him during soccer practice. (Sheridan
& Reingold, 2012)

(2) a. He scraped the cold food from his plate before
washing it.
b. He scraped the cold food from his spoon before
washing it. (Rayner & Well, 1996)

(3) a. Before warming the milk, the babysitter took
the infant’s bottle out of the travel bag.
b. To prevent a mess, the caregiver checked the
baby’s bottle before leaving.
c. Before warming the milk, the babysitter took
the infant’s diaper out of the travel bag.
d. To prevent a mess, the caregiver checked the
baby’s diaper before leaving. (Rayner, Ashby,
Pollatsek, & Reichle, 2004)

The cloze task is itself a language production task. It is
an off-line task, in the sense that it does not require the
subject to make a rapid, or even timed, response. The use
of cloze probability as a predictor variable in language
comprehension research rests, then, on the assumption
that the off-line production probability of a word obtained
from one group of subjects predicts some aspect of on-line
comprehension of that word for a different group of sub-
jects. This broad assumption appears justified, as cloze
probability is a very useful predictor variable indeed.
Smith and Levy (2011) found that a word'’s cloze probabil-
ity is a better predictor of self-paced reading time than is
the word’s empirically determined conditional probability,
as estimated from either a book corpus or a web-based

corpus. Indeed, corpus-based conditional probability
explained no additional reading time variance in a model
that included cloze probability. Similarly, Frisson, Rayner,
and Pickering (2005) found that even small differences in
cloze probability at the low end of the scale influence eye
fixation durations in reading, and that corpus-based
transitional probability has no additional effect when cloze
probability is carefully controlled (cf. McDonald &
Shillcock, 2003).

The present work is motivated by the question of what
the cloze probability of a word actually represents, in cog-
nitive terms. The answer to this question requires a theory
of how subjects perform the cloze task. This is the situation
for most dependent variables in laboratory tasks; for
example, the probability that a particular stimulus will
be identified as ‘old’ in a recognition memory task receives
a psychological interpretation only in the context of a the-
ory of how subjects perform old/new judgments. At the
broadest level, cloze probability has been assumed to
represent native speakers’ estimates of a word’s probabil-
ity given the preceding sentential context, such that, if in
(2) above plate has cloze probability of .8 and spoon has
cloze probability of .2, it can be reasonably concluded that
native speakers estimate the probability of plate in this
context to be .8 and spoon to be .2. But what kind of impli-
cit theory of how the task is performed links cloze proba-
bilities to speakers’ estimates of conditional probability?

There are two possible theories that researchers may
have in mind. The literal meaning of cloze values of .8 for
plate and .2 for spoon, in (2) above, is that plate was pro-
vided as a sentence continuation by 80% of the participants
in a cloze norming session, while spoon was provided by
20% of participants. Thus, one apparently plausible inter-
pretation is that there are two groups of subjects who
are genuinely different, in terms of their linguistic experi-
ence and real-world knowledge, so that for 80% of subjects
plate is the most expected word, and for 20% spoon is the
most expected word, with each subject producing his or
her most expected word. On this view, the cloze probabil-
ity of a word represents its predictability for the commu-
nity of speakers in the aggregate, but not for individual
speakers. For each individual speaker there is a single most
expected word. (See Van Petten & Luka, 2012, for further
discussion of this idea.)

If this were the model linking cloze probabilities to pre-
dictability, a comprehension experiment with sentence (2)
above would be expected to reveal two distinct groups of
subjects, with approximately 80% of participants respond-
ing to plate as if it is the expected word, showing relatively
fast reading of this word and a reduced N400 amplitude,
and the other 20% of participants showing the opposite
pattern, with a processing advantage for spoon. No such
distinction between subgroups of comprehension subjects
has ever been reported or, to our knowledge, seriously con-
sidered. We infer that this is not, in fact, the link between
cloze probabilities and predictability that researchers have
in mind.

The alternate theory assumes that though each subject
in the cloze task provides only a single response (leaving
aside the relatively few cloze studies in which subjects
are asked to provide multiple responses, e.g., Roland,



A. Staub et al./Journal of Memory and Language 82 (2015) 1-17 3

Yun, Koenig, & Mauner, 2012), cloze probabilities of .8 and
.2 for plate and spoon, respectively, mean that plate is quite
generally more expected than spoon, for all speakers, or at
least the vast majority. In other words, the 80/20 split in
cloze probabilities does not imply an 80/20 split between
subjects, but rather something like an 80/20 split within
the mind of each subject. On this theory, plate is in some
sense the more predictable response even for those
subjects who do not actually produce it in the cloze task;
variability in responses is due to a probabilistic aspect of
the response process itself, rather than differences in
subjects’ actual linguistic expectations.

How might subjects’ discrete cloze responses arise from
a subjective probability distribution that is more-or-less
similar across subjects? Smith and Levy (2011) provide a
suggestion: Each subject performs the cloze task simply
by sampling once from this probability distribution. Thus,
even if subjects have completely identical probabilistic
models of the language - indeed, even if the same subject
were to provide multiple responses (at different times) to
the same fragment - a range of cloze responses would be
elicited, in proportion to their probabilities in the cognitive
model that subjects share.

We suspect that Smith and Levy’s (2011) conception of
the link between cloze probabilities and predictability is
the one that most researchers have in mind, even if this con-
ception is generally inexplicit. However, Smith and Levy
point out that there is little empirical support, at present,
for the notion that subjects in the cloze task are successfully
sampling from a subjective probability distribution:

[P]articipants in a cloze task have some knowledge of
their language, which they presumably draw on when
producing continuations. But isn’t clear how they use
this knowledge. If they generated their cloze responses
by sampling from their subjective probability dis-
tribution (‘probability matching’), then cloze probabili-
ties would be identical to subjective probabilities. But
cloze norming is an offline, untimed, and rather unnatu-
ral task, which leaves ample room for conscious reflec-
tion and other strategic effects to distort this process—if
participants are even probability matching in the first
place (p. 1637-8).

Importantly, another result reported by Smith and Levy
(2011) is that the correlation between a word’s cloze
probability in a given context and its conditional probabil-
ity in actual corpora is modest, with certain biases appear-
ing in cloze responses. For example, a cloze response is
especially likely to be a semantic associate of words in
the preceding fragment, and to be a familiar word.
Considering these biases in the cloze task together with
the finding that cloze probability predicts reading time
better than does corpus probability, Smith and Levy sug-
gest that these biases may reflect “genuine errors in native
speakers’ probabilistic models of their language” (p. 1637),
which operate both in the cloze task and in the course of
on-line comprehension. Thus, Smith and Levy’s response
to their observation of systematic discrepancies between
cloze probabilities and corpus-based conditional probabili-
ties is to preserve the assumption that subjects in the cloze
task are predicting the next word of the sentence based on

sampling from a subjective probability distribution, but to
question the accuracy of this subjective probability dis-
tribution. Speakers’ subjective probability distribution for
the word following a given context over-weights familiar
words and words that are semantic associates of words
in the context, and as a result they produce these words
in the cloze task, and they expect to encounter these words
when reading or listening.

Though the cloze task is traditionally an untimed task,
the process of issuing a cloze response does unfold in time,
as in any timed production task such as picture naming
(e.g., Schriefers, Meyer, & Levelt, 1990), sentence produc-
tion (e.g., Ferreira, 1996), or selecting an agreeing verb form
(e.g., Staub, 2009). In research using these timed tasks, the
pattern of response times (RTs) is used in concert with
response proportions to constrain theories of the process
by which a response is generated. In cognitive psychology
more broadly, it is regarded as critical for cognitive models
to account for both response proportion data and RT data,
and for the relations between them (e.g., Luce, 1986). In
the present work, we collect RTs together with cloze
responses in order to inform and constrain a model of the
process by which subjects produce cloze responses.

Smith and Levy’s (2011) conception of a cloze response
as arising from a simple process of sampling once from a
subjective probability distribution, if this is regarded as a
genuine process model, makes a prediction regarding RT
that seems prima facie unlikely.! In the absence of addi-
tional mechanisms, this view of the process predicts that
there should be no relationship between the latency to pro-
duce a response and the identity of the response itself or the
context in which that response was issued. That is, higher
probability responses should be neither faster nor slower
than lower probability responses, and responses to a high
constraint context (e.g., one that elicits a single response
with probability .9) should be neither faster nor slower than
responses to a low constraint context (e.g., one that elicits no
single response with a probability above .1). This is because
the duration of a simple, one-time sampling process does
not depend on the value that is actually retrieved on a given
sample, or the shape of the sampled distribution.

We think most researchers share the intuition is that it
is much easier, and therefore faster, to produce the
expected continuation to a constraining context as in (1a)
than it is to produce any continuation to an unconstraining
context as in (1b). These contexts are repeated here, with-
out the remainder of the sentences.

(1) a. The athlete pulled a
b. Peter says that a

In fact, there is previous evidence that this intuition is cor-
rect, though this small literature does not effectively dis-
tinguish effects of cloze probability itself from effects of

! We are not certain that Smith and Levy (2011) actually do intend a
simple, one-time sampling model to be regarded as a process model. It is
possible that it is intended as a computational level (Marr, 1982)
description of the subject’s task, rather than as a description of the
algorithm that is used to complete the task.
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item constraint. Goldman-Eisler (1958) found that speak-
ers are more likely to pause before producing low probabil-
ity continuations. Two published studies since then (Cohen
& Faulkner, 1983; Nebes, Boller, & Holland, 1986) have
examined cloze task latencies in some form. Cohen and
Faulkner (1983) had subjects read aloud sentences with a
missing final word, asking them to supply this word.
They compared the time to read the sentence and supply
the final word with the time taken to read the sentence
when the final word was provided. This difference was
greater when the final word had low cloze probability than
when it had high cloze probability. Nebes et al. (1986) used
a somewhat finer-grained method, closer to the one we
employ in this paper, playing subjects recorded sentences
that were missing a final word, and asking subjects to ver-
bally complete the sentence so that it made sense. Subjects
took longer to respond to less constraining contexts.

To anticipate the conclusions of the experiments we
present here, both cloze probability and item constraint
have reliable, and sizable, influences on RT: A cloze
response is faster when the response is higher in probabil-
ity, and is also faster, at a given level of probability, when
the item is more constraining. We show that these patterns
are consistent with a very simple kind of process model,
according to which a cloze response is the winner of a race
toward a threshold level of activation; on this model, sub-
jects are reporting the first word to reach this threshold.
For other psycholinguistic applications of the notion of a
race between activated representations, see e.g. van
Gompel, Pickering, and Traxler (2000) or Frauenfelder
and Schreuder (1992).

The remainder of this paper proceeds as follows. We
present two experiments using a version of the cloze task
in which the context was presented in Rapid Serial Visual
Presentation (RSVP) format, and the RT to begin speaking
was recorded. This method of stimulus presentation
enabled timing of the latency to initiate a response without
introducing additional variability due to sentence reading
time. We find that cloze probabilities in this task are very
similar to the standard paper-and-pencil cloze task, war-
ranting inferences from this task to the process of produc-
ing a cloze response in the usual untimed version of the
task. We find that higher probability responses are pro-
duced faster, and that at a given level of probability, a
response is produced faster in a more constraining context.
Additional analyses show that this latter effect cannot be
reduced to an effect of semantic relatedness between
responses in constraining contexts. In the General
Discussion we describe how a race model naturally cap-
tures the RT patterns obtained in the experiments, and
we discuss implications of these findings for the inter-
pretation of the cloze probability variable.

Experiment 1
Method
Subjects
Thirty-nine subjects participated in the experiment. Six

subjects were excluded from analysis due to a failure to fol-
low the experimental instructions (e.g., not producing any

continuation on many trials, or producing full sentence
continuations rather than single words), leaving 33 sub-
jects. All subjects were undergraduate students at the
University of Massachusetts Amherst, who earned psychol-
ogy course credit for their participation, and were naive to
the purpose of the experiment. All subjects were native
speakers of English with normal or corrected-to-normal
vision.

Materials

Each subject was presented with 377 experimental sen-
tence fragments. Of these, 128 were adapted from Staub
(2011). The items in Staub (2011) were originally based
on items from Altarriba, Kroll, Sholl, and Rayner (1996).
Staub (2011) collected cloze norms for each of the items,
using the standard paper-and-pencil method, from
between 37 and 42 University of Massachusetts under-
graduates. Several of the normed items were excluded from
the eye movement experiment reported in Staub (2011),
but all were included in the current experiment. The
remaining 249 items were adapted from Best (2011), some
of which were based on materials from Bloom and Fischler
(1980). The materials from Best (2011) were previously
normed in a paper-and-pencil cloze task by 22 University
of Massachusetts undergraduates. For 176 of the 377 frag-
ments, a specific word was established to have high cloze
probability for the purposes of the Staub (50 items) or
Best (126 items) experiments. An additional 15 filler items,
which were not normed in any earlier study, were inter-
mixed with the experimental items. These were short frag-
ments that were included in order to increase the number
of short fragments in the experiment and thereby decrease
subjects’ surprise at an early termination of a fragment.
Presentation of five practice items preceded the experi-
ment. The full set of items is available upon request.

Procedure

The experiment was carried out using E-Prime 2.0
experimental software (Schneider, W., Eschman, A., and
Zuccolotto, A., 2012), running on a Windows PC computer
with a CRT monitor. Subjects were tested individually in a
quiet experimental testing room. Prior to beginning the
experiment, subjects were fitted with a head-mounted
microphone to record their responses. Each trial was
initiated by a button press from the subject. A cross then
appeared for 1000 ms in the center of the screen. The
words of the sentence fragment then appeared succes-
sively, centered on the same location, for 300 ms each. At
the completion of the fragment, a horizontal line was pre-
sented, serving as the prompt for the subject to provide the
next word. The subject then had 3000 ms in which to say a
response aloud. On each trial, the software recorded a .wav
file with a three-second duration, beginning simultane-
ously with the presentation of the prompt. The items were
presented in a random order to each subject.

To begin the experiment, subjects read the instructions
“Iw]hen you see the blank, please say out loud the next
word that you think should be in the sentence. Please try
to say the word as quickly as possible, speaking at a natural
volume and avoiding saying “umm” or “aah”, etc. before
you say the word.” The experimenter remained in the
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testing room while the subject completed the five practice
trials, which contained items meant to range in constraint.
After completing the practice trials, subjects had an oppor-
tunity to ask questions about the experimental procedure.
The experimenter then left the room for the remainder of
the session, which took approximately 45 min.

Coding of responses

A coder initially listened to and transcribed each of the
response recordings without access to their sentence frag-
ment contexts. After this initial coding stage, a second coder
examined the responses while inspecting the sentence
fragments that preceded them. At this point, several types
of corrections were made. Responses that had been tran-
scribed as obvious homophones of the intended response
were corrected (e.g., boarder was corrected to border in
response to the fragment We crossed over the ).
Obviously mistaken segmentation of words by the initial
coder was also corrected (e.g., teach her was corrected to
teacher as a continuation to the fragment He entered the
classroom to ask the ). In addition, in cases where
there were both plural and singular forms of the same
response for one item, these were collapsed by changing
the less common form of the word to the more common
form (e.g. floors in response to Mary decided to sweep the
wooden was changed to floor, which was the more
frequent response), as appears to be the usual practice in
coding cloze responses, and as was done in Staub (2011)
and Best (2011). When subjects responded with more than
one word, only the first word of the subject’s response was
included unless the words formed a compound. Responses
that included determiners were coded without the deter-
miner; these cases were very rare, as syntactic constraints
prohibited a determiner continuation in most items. A third
coder measured the response latencies by visually inspect-
ing the waveforms using the Praat software for speech
analysis (Boersma, 2001), placing a cursor at the word onset
and exporting the cursor time to a text file. The responses
and their latencies were then merged for analysis.

Results

Trial exclusion

Of the 377 experimental items completed by each sub-
ject, two were eliminated due to programming errors. In
addition, there were 992 trials (8.0%) on which the subject
did not make a verbal response within the 3 s deadline, or
in a few cases made an indecipherable response, leaving a
total of 11,383 codable responses. Trials without a codable
response were not included in the analyses below. The rate
of failing to respond was related to item constraint; for the
items that were defined as having high constraint based on
the Staub (2011) and Best (2011) norms, the non-response
rate was only 4%. In the analyses reported below, 33 (i.e.,
the maximum possible number of codable responses)
serves as the denominator for all computation of response
proportions. Note, however, that both the qualitative pat-
terns and all statistical conclusions are unchanged if the
number of valid responses to each item is used as the
denominator.

Item constraint and agreement with previous norms

To assess each item’s level of constraint, we first com-
puted Shannon entropy, an information-theoretic measure
that takes into account how many unique responses an
item elicited, and these responses’ probabilities; a high-
entropy item is one that elicited many distinct responses,
with these responses having relatively similar probability.
However, in the present data, entropy was almost perfectly
correlated with the probability of the item’s modal
response, r = —.977; the higher the probability of the modal
response, the lower the entropy. We note that both entropy
(e.g., Yun, Mauner, Roland, & Koenig, 2012) and the proba-
bility of the modal response (e.g., Schwanenflugel &
LaCount, 1988) have been used as measures of item con-
straint in the literature. In the remainder of this paper we
use the probability of the modal response as the measure
of item constraint, due to its ease of interpretation, and
due to the fact that it is on the same scale as cloze probabil-
ity. The mean level of item constraint in this experiment, by
this measure, was .454. The distribution of constraint val-
ues was somewhat bimodal, as expected based on the fact
that the items were originally designed to be either very
constraining or not; the median was .394, with first and
third quartiles of .182 and .727 respectively.

To assess the extent to which responses elicited by the
current procedure agreed with the previous paper-and-
pencil norms obtained by Staub (2011) and Best (2011),
we compared the modal response to each item in the
present experiment and in the paper-and-pencil norms,
for those items that were specifically identified as highly
constraining in the earlier studies. The modal response
was the same word for 161 of the 176 items (91.5%). The
exceptions were generally cases in which the two distinct
responses were closely semantically related, if not syn-
onyms, e.g., exam Vs. test, cancer vs. illness. In addition,
the correlation across all 375 items between the item
constraint values in this study and in the original paper-
and-pencil norms was r=.91. In sum, the switch from a
paper-and-pencil paradigm to a speeded spoken response
paradigm had little effect on the word that was most likely
to be selected, for those items that were highly constrain-
ing, and there was also a high degree of correspondence
between an item’s level of constraint in the paper-
and-pencil paradigm and in the current paradigm. These
conclusions are important, as they justify the inference
from RT results in the current paradigm to conclusions
about the interpretation of cloze probabilities in the usual
paper-and-pencil paradigm.

Response time analysis

To analyze effects of a range of predictors on RT, we con-
structed linear mixed-effects models of RT using the Ime4
package (version 1.1-7; Bates, Maechler, Bolker, & Walker,
2014) for the R statistical programming language (version
3.1.2; R Core Team, 2014). Several preliminary notes are
in order. First, in all the models below, we included the
maximal random effects structure for subjects (i.e., subject
intercepts, by-subject slopes for each of the fixed effects
and their interactions, and correlation parameters), except
as noted. We did not include random effects for items, as
in the present design item effects cannot be estimated
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independently of the fixed effects of interest, especially the
item constraint variable, as each item occurs at only one
level of item constraint. Second, all fixed effects were cen-
tered on their mean prior to being entered into the model,
except as noted below. Third, note that we report models
of raw as opposed to log-transformed RT, but in all cases
models with log-transformed RT as the dependent variable
produce qualitatively similar results and identical patterns
of significance. Fourth, to check for excessive collinearity
we computed the variance inflation factor (VIF) for all pre-
dictors, using the vif.mer() function developed by Austin
Frank for mixed-effects models (available at https://github.
com/aufrank/R-hacks/blob/master/mer-utils.R). Except as
noted, VIFs were less than 5. This is a fairly conservative
criterion, as a value of 10 is often suggested as the maxi-
mum acceptable VIF (e.g., Hair, Anderson, Tatham, &
Black, 1995). In the few cases in which a VIF exceeded this
value, we modified the model by removing individual pre-
dictors with the highest VIFs until all VIFs were below 5, as
described in the text.

Finally, we note that we explored effects of three con-
trol predictors on RT that are not included in the models
we present below: the log frequency of the word that a
subject produced (based on the SUBTLEX norms;
Brysbaert & New, 2009), the order of the trial in the experi-
ment sequence, and the number of words in the context
fragment. Word frequency and trial order did not signifi-
cantly affect RT, either on their own or in interaction with
other factors. However, word frequency was indeed corre-
lated with response probability and item constraint, and
we discuss these correlations below.

The length of the context fragment did have a reliable
effect on RT, as responses were faster for longer fragments.
This variable was also related to item constraint, as more
constraining items tended to be longer, with a correlation
between the two variables of r=.49. However, the effect
of item constraint was fully significant in models that also
included fragment length, and the two effects did not
interact. Moreover, we conducted Experiment 2 in part to
eliminate any potential influence of differences between
fragments in length or structure. Thus, we leave all three
of these control predictors out of the analyses we report
here.

The overall mean RT was 1329 ms (SD = 515 ms). Fig. 1a
illustrates the relationship between cloze probability and
RT. Higher cloze responses were issued much faster than
lower cloze responses. The relationship appears roughly
linear, though there is some indication that RT decreases
faster across very low levels of cloze than at higher levels.
Interestingly, Smith and Levy (2013) have suggested that
there is a logarithmic relationship between predictability
and self paced reading time. In Fig. 1b we show RT as a
function of log;o cloze probability. In this experiment RT
is not quite a logarithmic function of cloze, as a perfectly
logarithmic function would show a straight-line relation-
ship on this graph. The relationship appears to be some-
where between a linear and logarithmic function (see
Smith & Levy, 2013, Fig. 1). Identifying the best-fitting
parameterization of this relationship is far from the aim
of this paper, so we leave this issue for future research.
Here we assume a linear statistical model.

The results of our statistical analyses are reported in
Table 1. Our first statistical model (Model 1) included cloze
probability as the only fixed effect, revealing a very large
and highly significant effect of this variable on RT (we treat
|t]| >2 as statistically significant). However, it is conceiv-
ably possible that this effect of cloze probability does not
reflect a difference between high and low cloze responses
to the same item, but rather reflects an effect of item con-
straint, such that high constraint items generally elicit fas-
ter responding. To rule this out, we constructed a model
(Model 2) with item constraint and a response’s status as
a modal or non-modal response to the item as predictors.
Modal vs. non-modal response was coded with modal
response taking the value .5 and non-modal response the
value —.5. The effects of these two variables (with con-
straint split at .5 for purposes of illustration) are shown
in Fig. 2. Modal responses were much faster than non-
modal responses; thus, it is clear that the overall effect of
response probability cannot be attributed to an effect of
item constraint. In addition, there was indeed a sizable
effect of item constraint, and a sizable interaction, in the
direction of a larger effect of the modal vs. non-modal dis-
tinction for high constraint items. This interaction is
expected, as the difference in probability between a modal
and non-modal response will necessarily be larger for
more constraining items.

In order to investigate whether there is an effect of item
constraint that is independent of the effect of response
probability, we constructed a model of RT that included
only responses with cloze probability <.4. Responses with
cloze >.5 are necessarily the modal response, so for these
responses it is not possible to separately evaluate the influ-
ence of response probability and item constraint. In the
present data there was only a single item that elicited a
response with probability between .4 and .5 where this
was not also the modal response, so we restricted our
analysis to responses with cloze probability <.4. This model
(Model 3) included cloze probability and item constraint,
and their interaction, as fixed effects. In this model the
cloze probability variable was centered at a value of .2,
i.e., the midpoint of the range of cloze probability values.
In the model, the effect of cloze probability was significant,
the effect of item constraint was significant, and the inter-
action was not significant. The data patterns are shown in
Fig. 3, where for ease of visualization the responses have
been divided into two item constraint groups (at .5) and
three probability bins (singleton responses with probabil-
ity 1/33 =.03, non-singleton responses with cloze less than
.20, and responses with cloze from .20 to .40). It is clear
from the figure that at each level of cloze probability, there
is a sizable effect of item constraint, with responses being
issued faster when the item was more constraining.

Word frequency

As mentioned above, word frequency was not a signifi-
cant predictor of RT in this experiment. It is possible, how-
ever, that interpreting the relationship between response
probability, item constraint, and RT is complicated by dif-
ferences between the words that were actually produced
at different levels of response probability and item con-
straint. Specifically, it is possible that higher probability
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Fig. 1. Mean RT in Experiment 1 at each level of (a) cloze probability and (b) log cloze probability. Error bars represent standard error of the mean.

Table 1 =3
Parameter estimates, standard errors, and t values from linear mixed- = & nonmodal
effects models of RT in Experiment 1. Models are described in the text. ° & modal
o
Estimate (B) Std. Error t value e 3 S
[72]
Model 1 é 8 |
Intercept 1338.10 32.03 41.78 [~ &
Probability —695.64 34.35 -20.25 ox o .
o _|
Model 2 e
Intercept 1355.44 32.98 41.10 o
Modal vs. Nonmodal —205.49 11.93 -17.22 =3 3 ) 3
Constraint 54817 37.68 ~14.55 item constraint <= .5 item constraint > .5
Modal x Constraint —188.56 36.73 -5.13 . . .
odal x tonstrain Fig. 2. Mean RT in Experiment 1 by a response’s status as modal vs. non-
Model 3 modal response, and item’s level of constraint. Error bars represent
Intercept 1338.55 35.38 37.84 standard error of the mean.
Probability —-1124.03 89.26 -12.59
Constraint -331.31 73.80 —4.49 . . .
Prob x Constraint 17.50 470.08 04 responses, and responses in high constraint contexts, tend
Model 4 to be more frequent words, and more frequent words are
Intercept 1038.04 39.33 26.39 produced faster (e.g., Griffin & Bock, 1998). In fact, the
Probability —-1538.42 12221 -12.59 correlations between (log) word frequency and these
Constraint —294.75 3711 ~7.94 variables are in the opposite direction from what this
LSA -147.33 37.80 -3.90

hypothesis predicts. Higher probability responses were
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Fig. 3. Mean RT in Experiment 1 by cloze probability and item constraint,
restricted to responses with cloze probability <.4. Error bars represent
standard error of the mean.

slightly less frequent than lower probability responses
(r=-.038, p <.001). Among responses with cloze probabil-
ity <.4, those that were produced in high constraint con-
texts were less frequent than those that were produced in
lower constraint contexts (r=-.109, p <.001). Thus, the
RT patterns obtained here occurred despite, rather than
because of, word frequency differences.

Semantic relatedness

Here we present an analysis to evaluate a specific expla-
nation of the finding that a low cloze response is faster in a
constraining context. When an item is constraining, non-
modal responses are likely to be related in meaning to
the modal response. For example, the fragment He cam-
paigned to win the was completed with election by
20 subjects, for an item constraint value of .61, but other
responses were related words such as contest, battle, award,
and prize. In less constraining contexts, on the other hand,
the various responses often appeared to be relatively unre-
lated in meaning. For example, the item He heard a faint
sound of one had constraint of only .1, and elicited
responses as diverse as bird, girl, cat, and crying. Thus, it
is possible that the effect of item constraint on RT, at a
given level of probability, may actually be an effect of the
semantic relatedness of a response to other responses.
One way this might come about is by means of facilitatory
connections between semantically related words;
responding contest after He campaigned to win the may be
relatively fast, even if this response is low in probability,
because contest benefits from its connection to the highly
activated word election (see Roland et al., 2012, for a
related hypothesis regarding comprehension).

We coded the semantic relatedness of each non-modal
response to the corresponding modal response by deter-
mining the Latent Semantic Analysis (LSA; Landauer &
Dumais, 1997) cosine between these two words using the
web-based interface maintained by CU Boulder (Isa.col-
orado.edu; specifically, LSA cosines were computed using
the General Reading topic space). We note, first, that the
LSA cosine is a relatively coarse measure of meaning relat-
edness, based on the similarity of the linguistic contexts in
which two words appear. We also note that there may be
advantages to a measure taking into account the related-
ness of a given response to every other response to an item.
However, computing such a measure raises a variety of
methodological questions (e.g., whether to count response

types or response tokens; how to count the relatedness of a
response with itself), so for simplicity we computed the
similarity to the modal response, which in any case is likely
to be a semantically ‘central’ response. In the few cases in
which there was more than one modal response to an item
(i.e., a tie between two responses) we used the average of
the cosines. We excluded from analysis any responses that
were not included in the corpus (e.g., proper names, acro-
nyms) as well as spaced compounds, which are treated by
LSA without regard to word order (e.g., meat loaf and loaf
meat are regarded as the same text). This left 5268 non-
modal responses for analysis. LSA cosines range from —1
to 1, with positive values indicating meaning overlap
between two terms. The great majority of values are
between 0 and 1, with most falling in the range between
0 and .5. For example, the LSA cosine between contest
and election is .34, while the cosine between lottery
(another response elicited by this item) and election is .04.

Non-modal responses were more related in meaning to
the modal response as item constraint increased, r =.244,
p<.001. Higher probability non-modal responses were
also more related in meaning to the modal response,
r=.328, p <.001. Dividing responses into those elicited in
high and low constraint items (item constraint >.5 vs.
<=.5) and those with high and low response probability
(responses provided by more than one subject vs. singleton
responses), the mean LSA cosine for the four groups of
responses was: high constraint, non-singleton (.337); high
constraint, singleton (.229); low constraint, non-singleton
(.251); low constraint, singleton (.171). A mixed-effects
linear regression model with LSA cosine as the dependent
measure, and with the item’s constraint and the probabil-
ity of the response as predictors (the interaction term was
dropped, due to a VIF of over 50) revealed a significant
effect of both predictors (item constraint: b=.153,
SE=.012, t=13.22; response probability: b=.846,
SE =.046, t = 18.45).

We then constructed a linear mixed effects model of RT
for these responses, including as a predictor the LSA cosine
between the response and the corresponding modal
response, as well as response probability and item
constraint; each predictor was centered on its mean. The
initial model including interactions of all fixed effects did
not show a main effect of semantic similarity, but very
high VIFs (>30) for several terms in this model required a
retreat to a main-effects only model (Model 4 in Table 1).
All three predictors had a significant effect in this model,
though the effect of semantic similarity was the smallest
both in absolute and standardized terms. Fig. 4 shows
mean RT, for the 5268 responses included in this analysis,
as a function of item constraint (coded by splitting at .5),
response probability (coded as singleton vs. non-singleton
response) and LSA cosine with the modal response, split
into low, medium, and high semantic similarity based on
a split into terciles at .11 and .25. This graph makes appar-
ent that RT does depend on both response probability and
item constraint, but does not seem to depend strongly on
LSA cosine.

In sum, this analysis suggests several conclusions. It is
indeed the case that non-modal responses are more closely
related to the modal response when the item is more
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Fig. 4. Mean RT in Experiment 1 for non-modal responses by status as
singleton or non-singleton response, item constraint, and LSA cosine with
modal response.

constraining. In addition, the semantic similarity between
a non-modal response and the corresponding modal
response may have an independent effect on RT, though
this effect should be regarded with some caution, due to
the fact that it emerged in model in which interaction
terms were eliminated, and that the effect is not readily
apparent in Fig. 4. In any event this effect appears to be
smaller than the effects of response probability and item
constraint on RT, and the effects of both response probabil-
ity and item constraint are significant in all models. There
is little evidence to support the contention that the effect
of item constraint on RT is due in its entirety or even in
large measure to semantic relatedness.

Discussion

This experiment showed, first, a very high degree of
correspondence between the responses that were pro-
duced in a timed cloze task and in the previous paper-
and-pencil norms for the same items. This correspondence
warrants inferences from the pattern of RTs in the present
task to conclusions about the process of producing a cloze
response in the typical untimed task. In addition, it sug-
gests that cloze responses in the typical untimed version
of the task are not much affected by the opportunity for
slow deliberation over what should come next. Subjects
produce essentially the same responses with no time limit
as when they have only three seconds to respond and have
no opportunity to re-read the fragment.

Cloze probability and RT are very strongly related; as
Fig. 1 shows, responses with cloze probability near 1 were
about 700 ms faster than singleton responses. This
relationship held within items, as the modal response to
an item was, averaging across levels of item constraint,
over 200 ms faster than non-modal responses. In addition,
low cloze probability responses that occurred in high con-
straint contexts were faster than similarly low cloze
responses in low constraint contexts. The estimate of the
constraint effect in Model 3 indicates that at a given level
of response probability, an increase in item constraint

from, e.g., .2 to .8 results in an RT decrease of about
200 ms. These effects are not due to differences in the
frequency of the words that are actually produced, and
cannot be attributed to semantic relatedness among
potential responses.

In the General Discussion we take up the question of
how these effects are best interpreted. However, we first
present the results of a second experiment designed to rule
out a potential artifactual explanation of the effect of con-
straint on RT, and to show that the basic patterns obtained
in Experiment 1 are replicable. In Experiment 1, there were
uncontrolled structural differences between the high and
low constraint contexts, and there were uncontrolled dif-
ferences in the syntactic and thematic position in which
the target word appeared. Thus, it is possible that in high
constraint contexts the point in the sentence at which
the response prompt is likely to appear was more easily
anticipated by subjects than in low constraint contexts.
This would be the case if, for example, there are only cer-
tain syntactic environments that tend to impose constraint
on the next word, and many other syntactic environments
that do not. If subjects are able to use these regularities to
anticipate the prompt position in high constraint contexts,
this would have had the result of generally speeding RT in
these contexts. In other words, the apparent effect of item
constraint may actually have been an effect of the pre-
dictability of the prompt location. In addition, as noted
above there was a relatively strong correlation between
item constraint and the length of the fragment, and even
though the effect of item constraint did not appear to be
due to this confound in Experiment 1, we wanted to elimi-
nate this confound entirely. In Experiment 2 all sentence
contexts were identical in length and in structure. In these
sentences, the position of the target prompt was perfectly
predictable in all items, whether high or low constraint.

Experiment 2
Method

Subjects

Forty-three subjects from the same pool as Experiment
1 participated in Experiment 2, of whom three were
excluded due to a high rate of failure to respond, leaving
forty subjects whose data were analyzed. No subject par-
ticipated in both experiments.

Materials

Each subject was presented with 338 experimental
sentence fragments. There were no filler fragments in this
experiment. The experimental fragments differed from
those used in Experiment 1 in that all were exactly five
words in length, and all used the same sentence structure,
i.e,, The AD] NOUN VERB[+past] DET _____. The determiner
that was the last word of the fragment was usually the
definite article (e.g., The challenging topic stumped

the ), though possessive pronouns or quantifiers
were used in several items (e.g., The barefoot man stubbed
his ; The happy gardener planted some ). The

items were designed so that based on native speaker
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intuitions they varied along the full range of constraint.
The experiment itself was used to verify these intuitions.
The full set of items is available upon request.

Procedure

The procedure was identical to Experiment 1, except
that a voice key, operated through a second microphone,
was used in conjunction with the experimental software
to record the latency from the onset of the response
prompt until the subject began speaking.

Coding of responses

Coding was identical to Experiment 1, except that we
developed software that enabled a single coder to first tran-
scribe what he or she heard, then to immediately see the
preceding fragment so as to correct any homophone tran-
scription errors or word segmentation errors. In addition,
the use of the voice key eliminated the labor-intensive pro-
cess of visual wave form inspection for the purpose of
identifying the response latency on each trial.

Results

Trial exclusion

No audible response was produced on 482 out of 13,520
trials (3.6%). We attribute the lower non-response rate in
this experiment to the predictability of the timing of the
response prompt. Of the remaining 13,038 trials, a valid
RT was registered by the voice key on 12,045 trials
(92.4%). Trials with a transcribed response but no valid
voice key trigger were included in the analysis of cloze
probabilities. As in Experiment 1, this analysis used the
maximum number of potential responses in the denom-
inator, in this case 40; as in Experiment 1, using the actual
number of valid responses to each item in the denominator
results in identical conclusions. The analysis of RTs
includes only those trials with a valid voice key trigger.

Item constraint

The mean level of item constraint was .445, which was
very similar to Experiment 1. The distribution of item con-
straint values was more uniform than in Experiment 1,
with the median at .375, and first and third quartiles at
.225 and .650, respectively.

Response time analysis

Overall, RTs were substantially faster in Experiment 2
than in Experiment 1 (mean=1062ms, SD=511 ms).
Again, we attribute this to subjects’ preparedness for the
response prompt.

Fig. 5 shows the overall relationship between cloze
probability and RT. As in Experiment 1, this relationship is
roughly linear, but trends toward a logarithmic relation-
ship. Table 2 shows the results of the statistical analyses.
A linear mixed-effects model of RT with cloze probability
as the sole fixed effect (Model 1) reveals a highly significant
effect of this factor. Fig. 6 shows that the relationship
between cloze probability and RT holds within items; the
modal response to an item was issued much faster than
were other responses. A model with a response’s status as
modal vs. non-modal, item constraint, and their interaction

as fixed effects (Model 2) reveals highly significant effects
of both factors, and a significant interaction, in the direction
of a larger difference between modal and non-modal
responses when the item was more constraining.

Fig. 7 shows that, among low-probability responses,
there was a substantial effect of item constraint, such that
responses at a given level of response probability were fas-
ter when the item was more constraining. A model of RTs
for responses with cloze probability <.4 (Model 3) reveals
a highly significant effect of cloze probability, a highly sig-
nificant effect of item constraint, and a non-significant
interaction.

Semantic relatedness

Because the semantic relatedness analysis of
Experiment 1 yielded somewhat equivocal results, we
repeated it for Experiment 2. The restriction to non-modal
responses that were represented in the LSA corpus yielded
6605 observations. The correlation between response
probability and relatedness to the modal response was
similar to Experiment 1 (r=.386, p<.001), as was the
correlation between item constraint and relatedness
(r=.190, p<.001). Again, both factors were significant in
a mixed-effects model (item constraint: b=.107,
SE=.013, t=8.02; response probability: b=.851,
SE =.031, t =27.10). Unlike in Experiment 1, including the
interaction did not inflate the VIF, and there was indeed a
significant interaction between these variables (b = —.694,
SE =.180, t = —3.85). As both item constraint and response
probability increased, the LSA cosine increased less than
would be predicted on an additive model.

We then constructed a model of RT as for Experiment 1
with LSA cosine, response probability, and item constraint
as predictors. We note that in this case the VIF was not
inflated when the model included interaction terms,
though it was necessary to remove random interaction
slopes to obtain convergence, as well as the random effect
correlation parameters. The results are shown in Model 4.
As in Experiment 1, all three main effects are significant,
but the effect of semantic relatedness is again the smallest.
In this model, two of the two-way interactions are also sig-
nificant. It appears that RT may be slower than an additive
model would predict when a non-modal response is both
high in probability and strongly related to the modal
response, and that RT may be faster than predicted by an
additive model when the item is constraining and seman-
tic relatedness is high. We note that the latter finding con-
trasts with a recent finding in the comprehension
literature by Yun et al. (2012), who found that in self-paced
reading, semantic similarity of a word to other potential
continuations reduced reading time only in low constraint
contexts. The effects are visualized in Fig. 8, where RT is
displayed for the 6605 observations in this analysis as a
function of response probability (singleton vs. non-single-
ton response), constraint (split at .5) and semantic similar-
ity to the modal response (split into terciles at .10 and .26).
In this figure, unlike in Fig. 4, there is indeed a clear
relationship between semantic similarity and RT, though
again the separate effects of response probability and item
constraint are both apparent.
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Fig. 5. Mean RT in Experiment 2 at each level of (a) cloze probability and (b) log cloze probability. Error bars represent standard error of the mean.

Discussion

This experiment provides a very straightforward repli-
cation of the patterns in Experiment 1 in a context in
which the position of the target prompt was perfectly pre-
dictable. There was a very large effect of cloze probability
on RT, with higher cloze responses being produced faster.
This relationship held within items, as the modal response
to each item was produced much faster than non-modal
responses. In addition, this experiment replicated the find-
ing that among low cloze responses, a response was pro-
duced substantially faster when it occurred in a high
constraint context. We note that all effects in this experi-
ment are similar in size to those in Experiment 1, despite
the fact that responses in this experiment were faster over-
all. Evidently, the RT advantage for high constraint con-
texts cannot be attributed to the potential for subjects to
anticipate the prompt location in those contexts. In this
experiment the effect was clearly replicated despite the
prompt occurring at the same point in all items. Indeed,

in Experiment 2 the estimate of the effect of item con-
straint on RT for low cloze responses was numerically lar-
ger than in Experiment 1.

The semantic relatedness analysis increased somewhat
the strength of the evidence that relatedness of a non-
modal response to the corresponding modal response does
have an effect on RT. However, this analysis confirmed that
the effect of relatedness does not subsume the effect of
item constraint; to the contrary, the effect of item con-
straint was larger than the effect of relatedness in a model
that included both.

General discussion

These experiments establish two important RT effects
in the cloze task. First, higher probability responses are
issued faster than lower probability responses. This
relationship holds in general, and it also holds within
items, as the modal response to an item is issued much
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Table 2
Parameter estimates, standard errors, and t values from linear mixed-
effects models of RT in Experiment 2. Models are described in the text.

Estimate (f) Std. Error t value

Model 1
Intercept 1064.15 26.82 39.68
Probability -671.49 28.68 -23.41
Model 2
Intercept 1063.74 26.98 39.42
Modal vs. Nonmodal -191.12 11.08 -17.25
Constraint —536.92 36.78 —14.60
Modal x Constraint —85.98 37.17 -2.31
Model 3
Intercept 1037.80 28.10 36.93
Probability -1259.18 73.93 -17.03
Constraint —423.26 61.12 —6.93
Prob x Constraint —426.61 423.82 -1.01
Model 4
Intercept 1212.82 31.31 38.73
Probability —1540.54 93.31 -16.51
Constraint —302.03 42.59 -7.09
LSA -160.28 33.42 -4.80
Prob x Constraint 991.75 529.69 1.87
Prob x LSA 863.58 337.47 2.56
LSA x Constraint -575.50 164.31 -3.50
Prob x Constraint x LSA 209.94 2209.15 .10
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faster than non-modal responses. This is true for both high
constraint and low constraint items. Second, responses at a
given level of cloze probability are issued faster in high
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Fig. 8. Mean RT in Experiment 2 for non-modal responses by status as
singleton or non-singleton response, item constraint, and LSA cosine with
modal response.

constraint contexts. For example, though a response with
cloze probability of .2 occurring in a context that also elic-
its a response with cloze probability of .8 is produced
slower than the alternative high probability response, it
is produced faster than a response with cloze probability
of .2 when that response is the modal response to the con-
text in which it occurs.

Though low cloze responses in high constraint contexts
tend to be semantically related to the modal response, this
semantic relatedness is not a main source of the RT advan-
tage for these responses. There does appear, however, to be
a relatively small effect of semantic relatedness on RT. In
the following discussion we focus on the two larger effects
of response probability and item constraint, though we dis-
cuss below the issue of integrating the effect of semantic
relatedness into the model we propose.

The main goal of the present work was to inform our
understanding of what cloze probability represents by
developing a model of how cloze responses are actually
produced. The RT effects constrain such a model, which
should explain why more common responses to a given
item are faster, and why responses are faster when an item
elicits a single response with higher probability. As we
noted in the Introduction, a model on which the subject
selects a response by sampling once from a subjective
probability distribution does not predict such RT effects,
in the absence of additional mechanisms. In what follows,
we show that a model in which potential responses are
independently activated, and race towards a threshold
level of activation, naturally predicts these RT effects. We
discuss implications of this conclusion for the inter-
pretation of the cloze probability variable.

Race model simulations

The general class of model that we use to account for
the empirical data is a very familiar one in cognitive psy-
chology. A wide variety of tasks that deliver both response
proportion and RT data have been modeled as evidence
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accumulation processes. The basic idea underlying this
framework is that the process of selecting a response on
each trial involves gradual accumulation of evidence over
time, with the response that is issued on that trial being
the first response to reach an evidence threshold.
Prominent models include Ratcliff's diffusion model
(1978; Ratcliff & McKoon, 2008), Usher and McClelland’s
(2001) leaky competing accumulator model, Reddi and
Carpenter’s (2000) LATER model, Nosofsky and Palmeri’s
(1997) exemplar-based random walk model (EBRW), and
Brown and Heathcote’s (2008) linear ballistic accumulator
(LBA) model. Generally, the evidence accumulation frame-
work is used to model data from two-alternative tasks, but
it can be extended to situations where multiple response
alternatives are present (e.g., Brown & Heathcote, 2008),
as in the cloze task. The very simple model we present here
is most similar in spirit to a poisson counter model (Smith
& Van Zandt, 2000; Townsend & Ashby, 1983) in which
multiple responses independently accrue evidence toward
a response criterion, without any facilitatory or inhibitory
interaction between them.

We simulate a race process as follows. Consider ten
potential responses to a sentence fragment, each indepen-
dently accruing activation. The response that is produced is
the first to reach a threshold. There is both between-re-
sponse and within-response variability in the rate at which
activation accrues, and therefore in how long it takes a
response to reach the threshold. We present a simulation
in which the overall mean time for a response to reach
the threshold is one second. The mean finishing time for
the ten responses varies from 955 ms to 1045 ms, in
10 ms increments. Within-response finishing times are
assumed to be Normally distributed with a standard devia-
tion of 50 ms. The between-response variability may be
thought of as reflecting stable differences in the relative
rate with which different responses are activated by the
context, while the within-response variability may be
thought of as reflecting trial-to-trial variability in each
response’s rate of activation, due either to differences
between subjects or to within-subject variability.

We simulate 100,000 races between the responses, i.e.,
100,000 cloze trials. On each trial, we determine which of
the ten responses finishes first and the finishing time of
that response. Fig. 9 illustrates the relationship between
the proportion of trials won by a given response and the
mean RT on the trials won by that response. These are
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Fig. 9. Mean RT by winning probability, in three race model simulations
described in the text.

plotted with the points labeled race 1. It is evident that tri-
als that are won by higher probability winners are com-
pleted faster. (Indeed, the plot shows a logarithmic trend
in the relationship between winning proportion and mean
RT, as in our experiments.) This happens for a simple rea-
son. When a relatively fast finishing time is sampled from
the distribution of finishing times for the response with the
fastest average time (955 ms), this time will almost always
be the winning time, as other responses very rarely have
times that are as fast. The response with the second fastest
average time (965 ms) will tend to beat the fastest
response only when the response that is fastest, on aver-
age, does not have a particularly fast time on that trial.
The response with the third fastest average time
(975 ms) will beat the fastest and second fastest only if
both of those do not have particularly fast times, and so on.

It is important to note that all that is needed for this
general pattern to emerge is that there is both within-
and between-response variability in finishing time. The
nature of this variability is not particularly important in
producing this pattern. For example, the within-response
variability in finishing time may be modeled as right-
skewed distribution, such as a gamma distribution, which
is the distribution of finishing times if activation accumu-
lation is a poisson process (Townsend & Ashby, 1983).

We model the effect of item constraint in two ways. In
race 2, we make the mean finishing times of the ten
responses more variable. This assumes that the effect of a
constraining context is to spread out the distribution of
lexical activation, such that in a constraining context there
is a greater activation difference between the most- and
least-activated words; this is to say that a constraining
context is one in which some words are especially acti-
vated as potential continuations, compared to a neutral
context, while the activation of other words is decreased.
In this simulation, the finishing times have the same over-
all mean of 1s, but the mean finishing times for the ten
responses now vary in 20 ms increments from 910 to
1090 ms, rather than in 10 ms increments as in race 1.
The within-response, trial-to-trial variability in finishing
time is unchanged, with each response’s finishing times
varying Normally with standard deviation of 50 ms. The
results of 100,000 runs are shown on the plot. Because
there is more difference between responses in mean finish-
ing time, responses vary more in their winning propor-
tions. While the response with the fastest mean finishing
time won 28% of trials in race 1, the response with the fast-
est mean time won 44% of trials in race 2. The same
relationship between winning proportion and RT observed
in race 1 obtains in race 2.

In comparing race 1 and race 2, itisevident that ata given
level of winning probability, RT is faster in race 2. In other
words, the second critical pattern in the data has emerged:
RT is faster at a given level of response probability when
constraint is higher. Like the effect of response probability
on RT, the effect of constraint on RT is simply explained. In
race 2, the difference between responses’ mean finishing
time is greater than in race 1, with some responses being
faster, on average, than any of the responses in race 1.
Thus, in order to win the race on a given trial in race 2, a
response must reach the threshold very quickly.
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It is not obvious that the correct way to model item con-
straint is simply by making lexical activation more variable.
In race 3, we increase constraint from race 1 in a different
way. We assume here that a high constraint context is
one in which there is a single response that is very rapidly
activated by the context. (The patterns we describe here
also hold if more than one rapidly activated response is
added.) On this view, the sum of lexical activation is not
fixed; a constraining context has the effect of highly
activating one or more words, without reducing the activa-
tion of other words compared to a neutral context. We add
an eleventh response to those competing in race 1, and this
response reaches the threshold very quickly on average,
with a mean finishing time of 915 ms, i.e., 40 ms faster than
the response that was the fastest in race 1. This response
has the same standard deviation, 50 ms. The results of
100,000 runs are shown on the plot. In race 3, the newly
added, rapidly activated response wins 47% of races.
Again, the same relationship between winning proportion
and RT is in evidence. In addition, as in the comparison of
race 2 and race 1, the comparison between race 3 and race
1 shows that RT is faster, at a given winning proportion, in
the more constraining context. Thus, this pattern holds
whether an increase in constraint is modeled as an increase
in the variability of responses’ rate of activation, or if it is
modeled by adding a single rapidly activated response to
the distribution present in a lower-constraint context.

Another comparison between race 1 and race 3 is of
interest. Consider the second most likely winner of race
3, compared to the most likely winner of race 1. These
are responses that have exactly the same underlying dis-
tribution of finishing times, with a mean finishing time of
955 ms and standard deviation of 50 ms. In race 1, this
response wins 28% of the time, with a mean finishing time
of 903 ms when it does win. In race 3, this response wins
only 16% of the time, but with a mean finishing time of
891 ms when it wins. This demonstrates how the presence
of a single very fast response in race 3 influences the
dynamics of the race process overall; it makes other
responses less likely to win, but ensures that their wins
are accompanied by faster RTs. It also illustrates that there
is not a monotonic mapping, across contexts, between a
response’s winning probability and its typical rate of
activation (i.e., mean finishing time).

It may be noted that in the comparison of race 2 and
race 3, the RT pattern under consideration does not hold.
Race 3 has higher constraint, as the modal response has a
higher winning proportion, but the points on the plot are
slightly above those for race 2, i.e., RT is slightly slower.
This shows that it is not required for a race model to predict
the pattern in which higher constraint reduces RT. Changes
in constraint can be modeled in many different ways. In
race 3, there is less variability in mean finishing times than
in race 2, but on the other hand there is a fast outlier. This
particular way of increasing constraint would seem to have
little to argue for it on theoretical grounds. What we have
shown, however, is that two different plausible ways of
implementing the notion of contextual constraint do result
in the observed pattern.

The qualitative patterns present in the data are natu-
rally predicted by a model on which potential responses

independently accrue activation towards a response
threshold. In saying that these patterns are naturally pre-
dicted by this model, we mean that they are predicted with
a very minimal set of assumptions: (a) there is between-re-
sponse variability in mean finishing time; (b) there is
within-response trial-to-trial variability in finishing time;
and (c¢) an increase in constraint may be due either to
greater between-response variability in finishing time, or
to the addition of a response that is very fast, on average,
relative to other responses. Note that we do not assume
any interaction, either facilitatory or inhibitory, between
the potential responses. The finishing time of each
response, on a given trial, is independent of the finishing
time of all other responses.

Given the salience of the two critical RT effects in the
data (i.e., their size and replicability), they are benchmark
effects that any process model should be able to account
for. Obviously, the question is not settled in favor of an
activation-based race model of the type we have intro-
duced. However, this model captures the qualitative pat-
terns easily, using evidence accumulation assumptions
that are extremely familiar in models of a wide variety of
tasks in which the data include both response proportions
and RTs. Our own future research in this area is focused on
methods for parameterizing the model so as to provide the
best possible quantitative fit to the data, and determining
whether other modeling frameworks are also able to
account for the critical effects.

An obvious question is how the semantic similarity effect
could be captured by an activation-based race model. It is
perhaps unsurprising that semantic similarity should be
related to both response probability and item constraint,
on the assumption that a context will tend to activate multi-
ple related words (e.g., Roland et al., 2012). However, it is
arguably more surprising that semantic similarity has an
effect on RT that is independent of these other factors. In
the architecture of the model we have proposed, it is not
obvious how any other factor can have an influence on RT
that is independent of the effects of response probability
and item constraint, as any factor that influences a
response’s finishing time will also influence the probability
that it wins the race. Though the effect of semantic similar-
ity on RT is small, we do regard this effect as a challenge for
the model. It is an also an important question for future
research to determine the sources of the opposite interac-
tions between semantic similarity and constraint obtained
in Experiment 2 of the present study and in Yun et al. (2012).

Theoretical implications

If the process of producing a cloze response is best
understood as an activation-based race process, what sub-
jects are actually doing in the cloze task is reporting the
first word that reaches a threshold level of activation; we
may think of this more simply as reporting the first word
that comes to mind. Cloze probability, then, is the proba-
bility that a word is the first to come to mind as a contin-
uation, given the cloze prompt. What are the theoretical
implications of this view of cloze probability?
Specifically, what implications does this view have for
the idea that cloze probability is a measure of predictability,
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or of speakers’ estimate of a word’s conditional probabil-
ity? This boils down to the question of the relationship
between two probabilities: the probability that a word is
the first to reach a threshold level of activation, given a
cloze prompt, and the speaker’s estimate of its conditional
probability given that prompt.

These two probabilities must be related, but it is unli-
kely that they are simply identical. There is already evi-
dence that factors in addition to a word’s empirically
determined conditional probability have an influence on
cloze probability. As noted in the Introduction, Smith and
Levy (2011) found that lexical properties themselves influ-
ence cloze probability, so that, e.g., familiar words are
especially likely in cloze responses. This would be expected
if, as in many theories of lexical access and processing (e.g.,
Coltheart, Rastle, Perry, Langdon, & Zeigler, 2001; Levelt,
Roelofs, & Meyer, 1999; Morton, 1969), the rate with
which a lexical entry is activated in the course of either
comprehension or production depends on the strength of
that entry in long term memory. A word that is highly
likely as a sentence continuation may be relatively unlikely
as a continuation in the cloze task if it is difficult to
retrieve. Consider, for example, likely cloze responses to
the fragment To determine how fast his engine was revving,
the race car driver checked his . We assume that
the very low frequency word tachometer is unlikely to be
produced by many subjects, even though many might
recognize it as the ‘correct’ continuation.

Smith and Levy (2011) also found that participants are
biased to produce words that are lexically primed by the
words in the preceding context, which is expected on the
common assumption that exposure to a word causes
spreading activation to the word’s associates (e.g., Neely,
1977). It is also possible that other types of word-word
associations increase the probability of a cloze response.
Subjects may be likely to produce words that are phono-
logically primed by words in the fragment, and especially
when the task is in written form, they may be likely to pro-
duce words that share orthographic properties with words
in the fragment.

More generally, the factors that influence a word'’s rate
of activation by a cloze prompt, and therefore its probabil-
ity of winning a race to threshold, may depend on all the
details of activation of semantic, syntactic, and event-re-
lated representations. A perusal of actual cloze responses
reveals these complexities. Consider, from Experiment 2,
the item The confused man asked the _____. The modal
response to this item was question, with probability .55.
But for many of the lower-probability responses, including
clerk, attorney, police officer, wife, woman, person, lady, girl,
and teller, the response was an indirect object noun, rather
than a direct object. This illustrates how the response may
depend on the relative activation of syntactic structures, in
this case, double object vs. simple transitive. The large
literature on syntactic priming in production (e.g., Bock,
1986; Pickering & Branigan, 1998) suggests that it should
be possible to prime continuations that are consistent with
one syntactic frame or the other. While the use of four dif-
ferent terms for a female human (wife, woman, lady, and
girl) may be due to simple semantic priming from man,
the use of clerk, attorney, and police officer may arise from

activation of a specific event scenario in which a man is
confused. Again, we suspect that it is possible to prime a
response of this sort by activating a specific relevant sce-
nario. Finally, this item also elicited responses of time, date,
and directions. In these cases, the response may reflect the
activation of a relatively fixed idiom (e.g., asked the time).
Such idioms may be over-represented in cloze comple-
tions, if idioms are represented in a unitary manner (e.g.,
Swinney & Cutler, 1979). For example, we assume that
bucket would be very dramatically over-represented in
completions of The man kicked the

Regardless of the details of how lexical activation in the
cloze task is determined, viewing cloze probability as a
measure of relative lexical activation suggests a particular
perspective on the ubiquitous effects of cloze probability
in comprehension experiments: What psycholinguists have
called predictability effects may be parsimoniously re-de-
scribed as contextual activation effects. This re-description
simplifies an account of the causal mechanism by which
cloze probability operates in comprehension. If cloze
probability is seen as a measure of a word’s predictability,
it remains to be explained exactly how predictability causes
a higher cloze word to be processed more easily than a
lower cloze word. One way that this causal link can be
elaborated is by means of the notion of activation; a pre-
dictable word may be easier to process because it is more
strongly activated. Indeed, some theorists (e.g., DelLong,
Urbach, & Kutas, 2005; Kutas, DeLong, & Smith, 2011) have
equated prediction with ‘pre-activation’. However, if cloze
probability is itself seen as a measure of relative activation
by context, rather than as a measure of predictability, one of
the links in the proposed causal mechanism has been elimi-
nated; we may now propose that words with higher cloze
probability are easier to process in comprehension simply
because cloze probability is itself a measure of the word’s
relative level of (pre-) activation.

Conclusion

In two experiments, RT in the cloze task was found to
vary based both on the response’s probability and on the
item’s constraint: Higher probability responses were fas-
ter, and at a given level of probability, a response was fas-
ter in a higher constraint context. These patterns are
consistent with a process model of the cloze task in which
potential responses independently accrue activation
towards a response threshold. We argue that on this con-
ception of the cloze task, it is not obvious that cloze proba-
bility is a measure of predictability per se. Instead, it may
be a measure of a word’s relative level of activation by
the cloze prompt, which is likely to be influenced by many
factors in addition to the word’s conditional probability.
We suggest that this conception of the cloze probability
variable offers a re-interpretation of cloze probability
effects in comprehension.
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