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. Foundational questions
. Morphological complexity & Information theory
. Morphological description & Deep Learning

. Morphological explanation & Bayesian agents



Morphological diversity

e Sapiridentified several dimensions of diversity

e Number of morphemes per word (analytic, synthetic,
polysynthetic)

e Manner of combination (agglutenative, fusional)
e Function of affixes
e ClassI: concrete roots (table)
e Classll: functional derivation (-er)
e Classlll: concrete relational (number agreement)

e ClassIV: purely relational (case marking)



Morphological diversity

e Greenberg (1960) tried to make this more precise
e Index of synthesis (M/W): morphs per word

e Index of agglutination (A/J): agglutinative constructions
per morph juncture

e Compoundingindex (R/W): roots per word
e Derivational index (D/W) and inflectional index (I/W)
e Prefixal index (P/W) and suffixal index (S/W)

e Isolation (I/N), pure inflection (Pu/N), concord (Co/N):
fraction of intra-sentential relations (nexuses) expressed
by word order, case, or agreement



Morphological diversity

e These metrics are conceptually straightforward but hard
to implement

e Greenberg compared “the results of the indices calculated
for a passage of 100 words of English in 1951, and arrived
at by methods not longer fully recoverable by
introspection” with “indices for a 100-word passage done
recently in accordance with the methods outlined here”

1951 1953
Synthesis. . ............ 1.62 1.68
Agglutination. . ... ... .. 31 .30
Compounding. . ........ 1.03 1.00
Prefixing.............. 1.00 1.04
Suffixing. .............. .50 .64

Gross inflection. ... ... .. .64 .53



Morphological diversity

e Greenberg (1960)

TABLE 1
Sanskrit |{Anglo-Saxon| Persian English Yakut Swahili Anpamite Eskimo
Synthesis.............. 2.59 2.12 1.52 1.68 2.17 2.55 1.06 3.72
Agglutination. . ... .. .. .09 1 .34 .30 .ol .67 . .03
Compounding. . ....... 1.13 1.00 1.03 1.00 1.02 1.00 1.07 1.00
Derivation............ .62 .20 .10 .15 .35 .07 .00 1.25
Gross inflection. . . ... .84 .90 .39 .53 .82 .80 .00 1.75
Prefixing. ............. .16 .06 .01 .04 .00 1.16 .00 .00
Suffixing. . ............ 1.18 1.03 .49 .64 1.15 .41 .00 2.72
Isolation. ............. .16 .15 .52 .75 .29 .40 1.00 .02
Pure inflection. . ...... .46 47 .29 .14 .59 .19 .00 .46
Concord............... .38 .38 .19 11 12 .41 .00 .38




Morphological diversity

e World Atlas of Language Structures

e Feature 22A: Inflectional Synthesis of the Verb

Values

0000060

0-1 category per word

2-3 categories per word
4-5 categories per word
6-7 categories per word
8-9 categories per word
10-11 categories per word

12-13 categories per word

24
52
31
24


http://wals.info/feature




Paradigm size

e Morphological complexity also has a paradigmatic
dimension

e Languagesvary in the number of affixes that are available
(Anderson 2015)

e 500+ derivational affixes in W. Greenlandic
e 250in Kwakw’ala

e 150in English

e 15in Mandarin

e 0(?)inVietnamese



Paradigms

The earliest grammatical literature are Old Babylonian
Grammatical Texts (from 20008¢c-1600BC)

Grids of words in Sumerian and Akkadian following a
(more or less) consistent pattern

Verb paradigms list 3rd person, then 1st, then 2nd
Other consistent patterns for nouns and verbs

Scribes deviated from the usual order to point out
complications in Sumerian grammar
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OBGT VIL Indicative forms: present, preterite

Akk. structure

§16 am-du illakam he comes — G V Ps
§17 am-Si-du illakassum he comes to him 3D G V Ps
§21 mu-e-Si-du illakakkum he comes to you 2D G V Ps
§18 am-ma-du ittallakam he comes away — GtV Ps
§19 am-ma-Si-du ittallakassum he comes away to him 3D Gt V. Ps
§20 am-mu-e-Si-du ittallakakkum he comes away to you 2D Gt V. Ps
§12 i-du illak he goes — G — Ps
§13 in-Si-du illaksum he goes to him 3D G — Ps
§22 ba-du ittallak he goes away — Gt — Ps
§23 ba-si-du ittallaksum he goes away to him 3D Gt — Ps
§26 i-im-gen illikam he came — G V Pt
§27 i-im-Si-gen illikassum he came to him 3D G V Pt
§31 mu-e-Si-gen illikakkum he came to you 2D G V Pt
§28 im-ma-gen ittalkam he came away — GtV Pt
§29 im-ma-Si-gen ittalkassum he came away to him 3D Gt V. Pt
§30 im-mu-e-Si-gen ittalkakkum he came away to you 2D Gt V Pt
§24 in-gen, i-gen illik he went — G — Pt
§25 in-Si-gen illiksum he went to him 3D G — Pt
§32 ba-gen ittalak he went away — Gt — Pt

ba-$i-gen ittalaksum he went away to him 3D Gt — Pt




Paradigm size

e Inflection is another source of paradigmatic complexity

e Latin ‘star’

SINGULAR PLURAL
NOMINATIVE  stélla stéllae
GENITIVE stéllae stéllarum
DATIVE stéllae stéllis
ACCUSATIVE  stéllam stéllas
ABLATIVE stélla stéllis
VOCATIVE stélla stéllae

e One suffix per wordform, but between 8 and 12
alternatives for the suffix



Paradigm size

e WALS on case inventories

C @& @ @ ® O O OO

Value Representation
No morphological case-marking 100
2 case categories 23
3 case categories 9
4 case categories 9
5 case categories 12
6-7 case categories 37
8-9 case categories 23
10 or more case categories 24
Exclusively borderline morphological case-marking 24

Total: 261



O @ @ O

Paradigm size

WALS on past tenses
Value Representation
Past/non-past distinction marked; no remoteness distinction 94
Past/non-past distinction marked; 2-3 degrees of remoteness distinguished 38
Past/non-past distinction marked; at least 4 degrees of remoteness distinguished 2
No grammatical marking of past/non-past distinction 88

Total: 222



Table 1. Remoteness distinctions in Yagua

Name in grammar Use Suffix Example
Proximate 1 ‘a few hours previous to the time of utterance’ -jasiy rayaasiy
{ray-jiya-jasiy}

‘I went (this morning).’

Proximate 2 ‘one day previous to the time of utterance’ -jay rjjnudjenit
{ray-junnddy-jay-nif}
1sG-see-ProOX2-3sG

‘Il saw him (yesterday).’

Past 1 ‘roughly one week ago to one month ago’ -siy sadfichimyaa
{sa-dii-siy-maa}

‘He has died (between a week and a month ago’).

Past 2 ‘roughly one to two months ago up to one or two years ago’ -tly sadfitimyaa
{sa-diiy-tfy-maa}
3sG-die-PsT2-PERF

‘He has died (between 1 to 2 months and a year ago').

Past 3 ‘distant or legendary past’ -jada raryupeeda

{ray-rupay-jada}

1sG-be.born-pst3

‘Il was born (a number of years ago).’



Tilapa Otomi tenses (Palancar 2012)

Table 2. The grammatical tenses of T- Oto

Present continuous gm pem ‘you're washing it now’
habitual gru "neni ‘you commonly wash it’
Ambulative ga penl ‘you wash it away (here and there)’
;C% Imperfect continuous gra ma pem ‘you were washing it’
2 habitual gru’ mu penz ‘you used to wash it’
ambulative ga ma ti "meni ‘you were washing it away/long ago’
Past gu pem ‘you washed it’
Perfect xku " peni ‘you've already washed it’
Pluperfect xki "veni ‘you'd already washed it’
% Present gi "peni ‘you'll wash it’
2 Immediative xta gi "peni ‘you're about to wash it’
~  Ambulative gi f "meni ‘you'll wash it away (here and there)’
Andative gri "peni ‘you'll go wash it’
Past gi gi "peni ‘you'd wash it’
Perfect xki gi "peni ‘you'd have washed it’

Table 3. Local values.

Ambulative andative gd-r peni ‘you wash it away (here and there)’
%’ cisloc. g a f "neni ‘you're washing it as you come’
~ Past transloc. g™ u pem ‘you washed it somewhere else’
Perfect transloc. xk™'u pem ‘you've already washed it somewhere else’
Pluperfect transloc. k”” "neni ‘you'd already washed it somewhere else’
 Present transloc. y "meni ‘you'll (go and) wash it somewhere else’
— Past transloc. 'u g”u "peni  ‘you'd (go and) wash it somewhere else’

(and verbs agree with the person of the subject!)



Paradigm size

o Kiksht past tenses

ga(l). .. u- remote past

ga(l). ..t from one to ten years ago
ni(g)... u- from a week to a year ago
ni(g)...t last week

na(l)- last couple of days
i(g)...u- earlier today

i(g)...t just now

e Bamilete-Dschang has 15 compound tenses: “Thus,
combination of the tomorrow future (F3) with the later
today future (F2) indicates a situation that will hold soon
after some reference point tomorrow...” (Comrie 1985)



Morphological diversity

e Beyond simple counting, we can look for ways that

languages typically can be complex

e Nichols (1992) proposed a complexity metric based on the
fraction of possible inflections a language showed (cf.
Greenberg’s nexus-based measures)

e McWhorter (2001) on creoles

Markedness of phonemic inventory
Number of rules in syntax

Degree of grammaticalization of “fine-grained semantic
and pragmatic distinctions”



Morphological diversity

Rich case or tense systems add complexity to a
morphological system, but also do communicative work

Is Bamilete-Dschang more complex than Mandarin, or
less?

Can we quantify the net complexity of morphology?



Algorithmic complexity

e The Kolmogorov complexity K(s) of a sequence is the
length of the shortest program that can generate it

e Take some sequences of 1,000,000 digits:

00000000000000...
0101010101010...
1223334444555556...
001012012301234...
1248163264128256...
1123581321345589144...
31415926535897932...
78254633069748271...



Algorithmic complexity

The smallest program generating a completely random
sequence is the sequence itself (randomness=complexity)

Regularities in the sequence let us shorten the program
(patterns=simplicity)

Problems
e What programming language should we use?
e How do we know we’ve got the shortest program?

K(s) is not computable, but we can get an upper bound on
it via compression



Algorithmic complexity

e Compressed sizes of 1,000,000 digit sequences, in bytes:

00000000000000... 992
0101010101010... 993
1223334444555556... 2,843
001012012301234... 9,769
1248163264128256... 470,677
1123581321345589144... 470,594
31415926535897932... 470,450

78254633069748271... 470,474



Algorithmic complexity

Juola (1998) used this as a tool to get at the syntax/
morphology trade-off

Take Bible translations in various languages and compress
them to estimate K(s)

Replace each word with a random number (the=7643,
house=65, ...)

8634 139 5543
15 4597 1641
3978 102 6

jump walk touch
jumped walked touched
jumping walking touching

Figure 1: Example of morphological degradation process

Compress the result to estimate K(s")



Algorithmic complexity

Information at morphological tier

Increased information at degraded morphological tier

Information at (e.g.) syntactic tier

S

Figure 2: Hypothetical example of degradation ratios



Algorithmic complexity

e Compare K(s) and K(s"): the difference is what
morphology (and phonology?) was contributing to

patterns

Table 2: R/C ratios with linguistic form counts
Language R/C Types in sample

Tokens in sample

Maori 0.895
English 0.972
Dutch 0.994

French 1.01
Russian 1.04
Finnish 1.12

19,301
31,244
42,347
48,609
76,707
86,566

1,009,865
824 364
805,102
758,251
600,068
577,413



Algorithmic complexity

e Removing phonology and morphology together makes the
results very hard to interpret

e Developed further by Moscoso del Prado Martin (2011)

H(N) = G(N) + Hy(N),



Algorithmic complexity

Further decompose per-sentence complexity

lexicon derivation inflection syntax
+ g7

s = Ys +gs +«gs S

/lexicon /derivation _|_g/syntax _|_ L.
S

g. =9, + g,

inflection

gs = gs — g
Remove inflection from words in Europarl corpus using a

lemmatizer (cars > car, ate > eat, etc)

Remove syntactic relations by randomizing the order of
words in the corpus

Compare compressed sizes (*) of corpora before and after
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Figure 1: Summary of results. The upper panel plots the distribution of inflectional complexity (in nats/sentence)
values obtained for each language in the original word order corpora. The lower panel plots the same results for the
corpora in which the word order was randomized.



Algorithmic complexity

e Ehret (2018) also adapted Juola’s method, comparing the
compressed size of:

e original document
e document with 10% of the words removed (syntax)

e document with 10% of characters removed
(morphology)

e Applied to sample of texts from UD in 37 languages



Chinese
Urdu
Czech
Arabic
Hungarian
Slovenian
Croation
Spanish
Portuguese
French
Romanian
Catalan
Latvian
Finnish
Persian
Serbian
Galician
Ukrainian
Norwegian Nyorsk
Danish
Swedish
[talian
Norwegian Bokmaal
Slovak
Hebrew
Dutch
Polish
Estonian
English
Russian
Basque
Afrikaans
Turkish
Greek
Viethamese
Bulgarian
Hindi
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morphological complexity score

O afroasiatic —+ basque <> sinotibetan [ uralic

famil
Y /\ austroasiatic X indoeuropean \/ turkic

-0.925 4
Chines?
Hebrew
-0.950 -
Slovak
. X .
Estonian Slovenian Danish
: sh
0.975 - Ukrainian __ Polish Arabic _
Latvia>neper3'an English
Bulgarian
egian Nyersk— French
P Vigtnamese
-1.000 - omanian Rortuguese _ Spanish
Basque )
’ garian Hind Catalan
ltalian X& > X <
Swedish ><Serbian Urdu
+1.0257 X Greek
Galician
Afrikaans
-1.050 + >J
0.905 0.910 0.915

syntactic complexity score




Morphological diversity

Rich case or tense systems add complexity to a
morphological system, but also do communicative work

Another dimension of complexity comes from lexically
conditioned allomorphy (e.g., inflection classes)

Latin nouns
e 6 cases,2 numbers=12forms

e >5 different sets of 12 forms



Inflection classes

Inflection classes also create a kind of paradigmatic

complexity

Baerman, et al. (2009): Nuer nouns have two stems and
three possible suffixes: -@, -ka, -ni

‘bear’ ‘ant’ ‘lion’ ‘fat’ ‘egret’ ‘monkey’ ‘child’
NOM SG | let niec lony lieth boon gook gat
GEN SG let piec-kd  lony lieth-kd boon-ka  gook-kd  gat-ka
LOC SG let piec-kd  lony lieth boon-ka  goak gat-ka
NOMPL | leet niic luony lith boon-ni  goak-ni gaat
GEG PL leet-ni  piic-ni luony-ni lith-ni  booy-ni  goak-ni gaan
LOC PL leet-ni  piic-ni luony lith-ni  boop-ni  goaak-ni  gaat

Figure 8: Varieties of Nuer noun inflection (Frank 1999)



Inflection classes

e The possible combinations of singular and plural patterns
yield 16 different inflection classes

singular patterns

I 11 111 1\Y
NOM SG () (%) %) 0]
GEN SG () -ka -ka (%)
LOC SG -ka -ka () (%)
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NOM PL () -ni () (%) -ni (%)
GEN PL (%) -ni -ni -ni () (%)
LOC PL -n1 -ni -ni () -n1 ()

plural patterns

Figure 11: Singular ~ plural pattern mapping in Nuer (based on Frank 1999)



Paradigm Cell Filling Problem

Paradigm Cell Filling Problem: Given exposure to a novel
inflected word form, what licenses reliable inferences
about the other word forms in its inflectional family?

Do speakers simply memorize full paradigms?

e Tundra Nenets nouns have 210 forms: case, number,

POSSessor person, possessor number (Ackerman &
Salminen 2006)

e Khaling verbs have up to 331 forms (Jacques et al. 2012)

e Zipf’s Lawe: A few forms are frequent, but most are rare
(Chan 2008)



Zipf’s Law

e Czech National Corpus SYN2010
e 100 million morphologically tagged words
e 64,302 distinct noun lexemes
e 561,668 distinct noun wordforms
e 900,228 possible wordforms (7 cases, 2 numbers)
e Only 66 lexemes occur with full paradigms
e Nosingle form is observed for every lexeme

e Only 110 lexemes occur in the voc.pL (but more frequent in
spoken language, same as NOM.PL)
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Paradigm Cell Filling Problem

Paradigm Cell Filling Problem: Given exposure to a novel
inflected word form, what licenses reliable inferences
about the other word forms in its inflectional family?

It is implausible that speakers of languages with complex
morphology and multiple inflection classes encounter
every inflected form of every word

Hockett 1967: “in his analogizing ... [t]he native user of the
language ... operates in terms of all sorts of internally
stored paradigms, many of them doubtless only partial;
and he may first encounter a new basic verb in any of its
inflected forms.”



Paradigm Cell Filling Problem

Paradigmatic complexity apparently adds nothing (Wurzel
calls it “ballast”), but what does it cost?

Our intuition: nothing, as long as paradigms are organized
in a way that allows speakers to predict the correct forms

More specifically: we distinguish between e(numerative)
complexity and i(ntegrative) complexity

e E-complexity is the size of the system (number of
paradigms cells, allomorphs, inflection classes, morphs
per word, etc)

o I-complexity reflects the organization of paradigms to
make the PCFP tractable



The hypothesis: I-complexity

What makes a language difficult to learn and use (not to
describe)?

The issue is not simplicity or complexity per se, but the
nature of organization supporting that complexity

I-complexity is measurable and quantifiable

Principle of Low Paradigm Entropy: Paradigms tend to
have low expected conditional entropy



Information Theory

e Claude Shannon’s “A mathematical theory of
communication” (1948)

“The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point. Frequently the
messages have meaning; that is they refer to or are
correlated according to some system with certain physical
or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem.
The significant aspect is that the actual message is one
selected from a set of possible messages.”
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Information Theory

e Digital communications involves the transfer of symbols
drawn from a discrete alphabet

e Quantized analog signals
e English letters

e Decimal digits

e Racing flags

e Allomorphs

e Using a codebook, we convert among any discrete
information sources



Information Theory

e Theinformation content of a message /(p) is a function of
its probability

e Information is related to probability: more probable

events are less informative, less probable events are more
informative

e Information is also related somehow to code lengths: long
books have the potential to contain more information
than short ones



Encoding information

Suppose we want to transmit information about a poker
hand, and an earpiece is too obvious

Lots of approaches - toe taps, flashes of light, coughs, etc
- but let’s assume our message consists of a sequence of
binary choices (bits)

There are 2P different sequences of b bits
DX e X 2= 2b

-

b
And recall that if bx=y, then logpy = x

So the number of bits required to uniquely encode n
different sequences is [log: n|



Encoding information

e Abinary code for transmitting poker hands:

straight flush 0000
four of a kind 0001
full house 0010
flush 0100
straight 1000
three of a kind 0011
two pair 0101
pair 1001
high card 0111

e The expected message length E[(C]=4 bits per hand



Encoding information

o A prefix code taking advantage of uneven probabilities:

straight flush 0.0000154 000011
four of a kind 0.000240 0000100
full house 0.00144 0000101
flush 0.00196 00000
straight 0.00393 0001
three of a kind 0.0211 010
two pair 0.0475 011
pair 0.422 001
high card 0.501 1

e Now E[C]=2.01 bits, an average savings of 1.99 bits per



Encoding information

e Abetter code, taking advantage of probabilities

straight flush 0.0000154 11111111
four of a kind 0.000240 11111110
full house 0.00144 1111110
flush 0.00196 111110
straight 0.00393 11110
three of a kind 0.0211 1110
two pair 0.0475 110
pair 0.422 10
high card 0.501

e Forthisone, E[C]=1.61 bits, an average savings of 2.39 bits



Encoding information

Is there a better code out there, or is this the best we can
do?

Shannon’s Source Coding Theorem provides an answer:
the minimum code length for a message is bounded by its
information content I(p)

Okay, so, how do we measure I(p) ?



Information

e Some basic properties of a sensible measure of

information content I(p)

Information is non-negative: I(p) = 0

Events that are certain to occur convey no information
atall: I(p) =0

If two independent events (so that p12 = p1 X p2) occur
together, then the total information is the sum of the
individual informations: I(p12) = I(p1) + I(p2)

Information I(p) should be a continuous monotonic
decreasing function of p



Information

Given these axioms, a good candidate for our information
content function is

I(p) = ~logyp

forsome base b

10




Entropy

e This measure of the information content of a message x:

I(x) = —log,p(x)

is sometimes called the self-information or surprisal

e Indesigning a coding scheme, we need to take into
account all possible messages (if we knew in advance
which message we’d be coding, we wouldn’t need to code

it)

e The expected information content of a message E[/(X)] is
the entropy of X

H(X) = - > p(x)log, p(x)

xeX



Paradigm entropy

e Backto morphology

e The conditional entropy is the uncertainty in one random
variable on average, given that we know the value of
another random variable

HYX) = =) p® ) pOlx)log, p(yx)
xeX yeY
= HX.,Y)—HX)

e The conditional entropy of one cell given anotheris a
measure of i-complexity, or the inter-predictability with a
paradigm (Ackerman, Blevins, and Malouf 2009)



Pite Saami

For example: Pite Saami (Wilbur 2014, Ackerman & Malouf
2016)

Seven cases (setting aside the marginal essive and
abessive cases) and two numbers

Realized via stem grade (strong vs. weak) and suffix

Following Wilbur (2014), Pite Saami has eight nominal
declensions showing distinct grade and suffix patterns



bdbbmo ‘food’

NOM
GEN
ACC
ILL
INESS
ELAT

COM

Pite Saami

babbm-o

biebm-o

biebm-ov
babbm-oj
biebm-on
biebm-ost

biebm-ojn

PL
biebm-o
biebm-oj
biebm-ojd
biebm-ojda
biebm-ojn
biebm-ojst

biebm-oj



Pite Saami

CLASS NOM.SG GEN.SG ACC.SG ILL.SG INESS.SG ELAT.SG COM.SG
la str+a wk+a  wk+av  str+aj wk+an  wk+ast wk+ajn
Ib str+d wk+d  wk+av  str+dj wk+dn  wk+dst wK+djn
Ic str+o wk+o  wk+ov  str+oj wk+on  wk+ost wk+ojn
Id str+d wk+d  wk+dv  str+dj wk+dn  wk+dst  wk+djn
lel®  str+e wk+e  wk+ev  str+dj wk+en  wk+test  wk+ijn
17 wk+aj  str+a  str+av  str+aj str+an  str+ast  str+ajn
[Tla wk+0@ str+a  str+av  str+ij str+in str+ist  str+ijn
IIb  wk+V® str+a str+av  str+i str+in  str+ist  str+ijn
CLASS NOM.PL GEN.PL ACC.PL ILL.PL INESS.PL. ELAT.PL.  COM.PL
la wk+a wk+aj wk+ajd wk+ajda wk+ajn  wk+ajst wk+aj
Ib wKk+d wk+dj wk+djd wk+djda wk+djn  wk+djst wk+dj
Ic wk+o wk+oj wk+ojd wk+ojda wk+ojn  wk+ojst  wk+oj
Id wk+d wk+dj wk+djd wk+djda wk+djn  wk+djst  wk+dj
le wk+e wk+ij  wk+ijd wk+ijda wk+ijn  wk+ijst  wk+ij
11 str+a str+aj str+ajd str+ajda str+ajn  str+ajst  str+aj
[lla str+a str+ij  str+ijd str+ijda str+ijn = str+ijst = str+ij
[1Ib str+a str+ij  str+ijd str+ijda str+ijn  str+ijst = str+ij

Table 1: Pite Saami nominal inflection classes (adapted from Wilbur 2014)

16Class Ie nouns are also distinguished by “non-adjacent regressive vowel harmony triggered by the presence
of /j/ in certain case/number suffixes” (Wilbur 2014:102).

7Class Il nouns show variation in the suffix vowel, though “there do not appear to be many words in Class II,
and the data in the corpus are ultimately inconclusive” (Wilbur 2014:104).

18 Class I1Ib, nominative singular forms drop a stem-final consonant. For example, compare Class llla vands
‘boat’ NOM.SG ~ vadnds-a GEN.SG and Class IIIb bena ‘dog’ NOM.SG ~ bednag-a GEN.SG. In both, the -n- ~ -dn- alter-
nation follows from general stem grade patterns, but the loss of the final -g in bena does not (Wilbur 2014:106).



Pite Saami

If all eight classes are equally likely, then the declension

entropy is:
H(D) = Z L og =
B)== 2, b7 "% 1p]
deD
1
B ]
= 3 bits

This is the highest possible value for H(D)

Anything that helps prediction (skewed probabilities,
implicational relations, external properties) will reduce
H(D)



Pite Saami

Speakers rarely have to generate entire paradigms

Let D.-r be the set of declensions for which the paradigm

cell ¢ has the formal realization r. Then the probability
pc(r) that a paradigm cell c of a particular lexeme has the
realization ris the probability of that lexeme belonging to
one of the declensions in D=, or:

pe() = ) p(d)

dEDc=r
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The entropy of p.(r) is the paradigm cell entropy H(c),
the uncertainty in the realization for a paradigm cell c

NOM.SG GEN.SG ACC.SG ILL.SG INESS.SG ELAT.SG COM.SG
3.000 2406 2.406 2.250 2.750 2.750  2.750

NOM.PL GEN.PL ACC.PL ILL.PL INESS.PL ELATPL COM.PL
2406  2.750 2.750 2.750 2.750 2.750  2.750

Eight declensions, but ill.sg. only has 5 possible forms

Knowing theill.sg. leaves 0.75 bits of uncertainty in
declension

Average across all cells is 2.658 bits


http://ill.sg
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e Guessing either acc. sg oracc. plis hard, but guessing one
knowing the other is easy:

Acc sg Acc pl

wk+av < > wk+ajd
wk+av < » wk+ajd
wk+ov - » wk+ojd
wk+dv < > wk+djd
wktev < > wk+ijd

str+av <\istr+ajd
str+ijd
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The conditional entropy measures the uncertainty left in
one thing given that what know something else:

H(Y|X) = H(X,Y) — H(X)

- z Z p(x,y)log, p(¥|x)

XEX yeY

If we know acc. pl, then we also know acc. sg:

H (acc sglacc pl) = 0.0 bits

Knowing acc. sg doesn’t quite resolve what acc. sg is:

H(acc pl|acc sg) = 0.344 bits



NOM.SG

GEN.SG

ACC.SG

ILL.SG

INESS.SG

ELAT.SG

COM.SG

NOM.PL

GEN.PL

ACC.PL

ILL.PL

INESS.PL

ELAT.PL

COM.PL

NOM.SG GEN.SG ACC.SG ILL.SG INESS.SG ELAT.SG COM.SG NOM.PL GEN.PL ACC.PL ILL.PL INESS.PL ELAT.PL COM.PL

0.594
0.594
0.750
0.250
0.250
0.250
0.594
0.250
0.250
0.250
0.250
0.250
0.250

0.000

0.000
0.500
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000 0.000
0.000 0.344
0.344
0.500
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.344
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

0.000
0.344
0.344
0.500

0.000
0.000
0.344
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.344
0.344
0.500
0.000

0.000
0.344
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.344
0.344
0.500
0.000
0.000

0.344
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.500
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.344
0.344
0.500
0.000
0.000
0.000
0.344

0.000
0.000
0.000
0.000
0.000

0.000 0.000
0.344 0.344
0.344 0.344
0.500 0.500
0.000 0.000
0.000 0.000
0.000 0.000
0.344 0.344
0.000 0.000
0.000
0.000
0.000 0.000
0.000 0.000
0.000 0.000

0.000
0.344
0.344
0.500
0.000
0.000
0.000
0.344
0.000
0.000
0.000

0.000
0.000

0.000
0.344
0.344
0.500
0.000
0.000
0.000
0.344
0.000
0.000
0.000
0.000

0.000

0.000
0.344
0.344
0.500
0.000
0.000
0.000
0.344
0.000
0.000
0.000
0.000
0.000


http://gen.sg
http://acc.sg
http://ill.sg
http://iness.sg
http://elat.sg
http://com.sg
http://nom.pl
http://gen.pl
http://acc.pl
http://ill.pl
http://iness.pl
http://elat.pl
http://com.pl
http://nom.sg
http://gen.sg
http://acc.sg
http://ill.sg
http://iness.sg
http://elat.sg
http://com.sg
http://nom.pl
http://gen.pl
http://acc.pl
http://ill.pl
http://iness.pl
http://elat.pl
http://com.pl

gen.sg -

acc.sg -

ill.sg -

iness.sg -

elat.sg -

com.sg -

nom.pl -

gen.pl -

acc.pl -

ill.pl -

iness.pl -

nom.sg gen.sg acc.sg ill.sg iness.sgelat.sg com.sg nom.pl gen.pl acc.pl ill.pl iness.pl elat.pl com.pl
unknown




Information Theory

The conditional entropy of one cell given anotheris a
measure of inter-predictability

To extend this to the whole paradigm, we calculate the
expected conditional entropy
E[H(c|c)] = Z p(c1,c2)H (ca|c1)
€1,€2
This is one simple measure of how difficult the PCFP is for
a particular language

The higher the expected conditional entropy, the more
difficultitis to predict an unknown wordform, given a
known wordform.
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e Row averages measure predictiveness

NOM.SG GEN.SG ACC.SG ILL.SG INESS.SG ELAT.SG COM.SG NOM.PL GEN.PL ACC.PL ILL.PL INESS.PL ELAT.PL COM.PL
0.000 0.311 0.311 0.519 0.019 0.019 0.019 0.311 0.019 0.019 0.019 0.019 0.019 0.019

e Column averages measure predictability

NOM.SG GEN.SG ACC.SG ILL.SG INESS.SG ELAT.SG COM.SG NOM.PL GEN.PL ACC.PL ILL.PL INESS.PL ELAT.PL COM.PL
0.368 0.038 0.038 0.0/9 0.118 0.118 0.118 0.038 0.118 0.118 0.118 0.118 0.118 0.118

e Theoverall average is the paradigm entropy: 0.166 bits


http://nom.sg
http://gen.sg
http://acc.sg
http://ill.sg
http://iness.sg
http://elat.sg
http://com.sg
http://nom.pl
http://gen.pl
http://acc.pl
http://ill.pl
http://iness.pl
http://elat.pl
http://com.pl
http://nom.sg
http://gen.sg
http://acc.sg
http://ill.sg
http://iness.sg
http://elat.sg
http://com.sg
http://nom.pl
http://gen.pl
http://acc.pl
http://ill.pl
http://iness.pl
http://elat.pl
http://com.pl

Paradigm organization

e Paradigmsvary a lotin their apparent morphological
complexity

e Forall these paradigms, the paradigm entropy is much

lower than either the expected entropy or the declension

entropy
Amele 4.585 2.882 1.105
Arapesh 2 41 26 26 4.700 4.071 0.630
Burmeso 12 24 2 2 1.000 1.000 0.000
Fur 12 80 10 19 4.248 2.395 0.517
Greek 8 12 5 8 3.000 1.621 0.644
Kwerba 12 26 4 4 2.000 0.864 0.428
Mazatec 6 356 94 109 6.768 4.920 0.709
Ngiti 16 68 5 10 3.322 1.937 0.484
Nuer 6 12 3 16 4.000 0.864 0.793

Russian 12 26 3 4 2.000 0.911 0.538



Paradigm organization

e Some entropy-lowering strategies:
e Small number of cells, forms, inflection classes

e Paradigm Economy Principle (Carstairs 1984), No Blur
Principle (Carstairs-McCarthy 1994, 2010)

. .. EV . Declension Average Paradigm
Language Cells | Realizations . . Declensions
realizations entropy entropy entropy

Arapesh 2 41 26 26 4.700 4.071 0.630
Burmeso 12 24 2 2 1.000 1.000 0.000
Greek 8 12 5 8 3.000 1.621 0.644
Kwerba 12 26 4 4 2.000 0.864 0.428

Russian 12 26 3 4 2.000 0.911 0.538



Paradigm organization

e Some entropy-lowering strategies:

e Implicational relations (Wurzel 1989)

e Principal parts (Stump & Finkel 2007)

. .. Max . Declension Average Paradigm
Language Cells | Realizations . . Declensions
realizations entropy entropy entropy

Fur 12 80 10 19 4.248 2.395 0.517
Mazgtec 6 356 94 109 6.768 4.920 0.709
Ngiti 16 68 5 10 3.322 1.937 0.484

Nuer 6 12 3 16 4.000 0.864 0.793



Testing entropy: Simulations

e Theimplicational structure of the paradigms is crucial to

reducing paradigm entropy

e How can we test this?

Null hypothesis: Paradigm entropy of language L is
independent of paradigm organization

If this is true, then Ly, a version L with the same forms
and the same classes but a different organization,
should have more or less the same paradigm entropy

Bootstrap test: sample with replacement from the
space of possible Ly’s, and compare to the observed L



nom.sg gen.sg acc.sg ill.sg iness.sg elat.sg com.sg nom.pl gen.pl acc.pl ill.Lpl iness.pl elat.pl com.pl
class
la wk+0 str+a str+av  str+ijj wk+an wk+est wk+ajn str+a  str+ij wk+ajd str+ijda str+ijn  wk+ojst str+ij
Ib wk+3j wk+a wk+av  str+ij str+in str+ast wk+ojn str+a  wk+ij wk+ijd wk+ajda wk+ajn  wk+ajst str+ij
Ilc str+to0  wk+d wk+ev str+a; wk+an wk+ast wk+ajn  wk+e wk+a] wk+ajd  str+ijda  wk+3jn  str+ijst  wk+3j
Id wk+V  wk+e wk+3av str+a; wk+an wk+ast str+ajn wk+d wk+8d) str+ajd str+ajda  str+ijn  wk+ajst  str+aj
le str+e  wk+o str+av str+§j str+in  wk+ast  wk+ijn str+a wk+4] str+ijd wk+ajda wk+ajn wk+djst  wk+0j
I str+a str+a str+av str+oj str+an wk+ost  str+ijn wk+a  str+aj str+ijd wk+ojda  wk+ijn  wk+ijst  wk+aj
llla str+4  str+a wk+av str+d wk+on  str+ist  str+ijn  wk+o wk+oj wk+8jd wk+djda wk+ojn  str+ijst  wk+ij
b str+d wk+a wk+ov str+§j wk+en  str+ist  wk+3ajn wk+a  str+ij wk+ojd wk+ijda  str+ajn  str+ajst  wk+3j
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Language Cells Realizations | Declensions SEB AT Average SR Bootstap Avg | Bootstrap p
entropy entropy entropy

Amele 4.585 2.882 1.105 1.327 0.001
Arapesh 2 41 26 4.700 4.071 0.630 0.630 1.000
Burmeso 12 24 2 1.000 1.000 0.000 0.000 1.000
Fur 12 80 19 4.248 2.395 0.517 1.316 0.001
Greek 8 12 8 3.000 1.621 0.644 0.891 0.001
Kwerba 12 26 4 2.000 0.864 0.428 0.523 0.001
Mazatec 6 356 109 6.768 4.920 0.709 1.100 0.001
Ngiti 16 68 10 3.322 1.937 0.484 1.019 0.001
Nuer 6 12 16 4.000 0.864 0.793 0.811 0.160

Russian 12 26 4 2.000 0.911 0.538 0.541 0.383



Limitations

Ackerman & Malouf’s (2013) entropy estimates made a
number of (over-)simplifying assumptions

e always predicting one cell on the basis of one other cell
o allcells are equally likely to be known

e all cells are equally likely to be unknown

e speakers know all possible full paradigms

e speakers can always identify which paradigm cell a
wordform fills

e speakers can always identify which allomorph a
wordform represents



Limitations

e Current work (e.g, Bonami and Boyé 2014, Bonami and
Beniamine 2016, Sims and Parker 2019, Cotterell et al.
2019) addresses these concerns

Derives patterns from lexicons or corpora rather than
grammatical descriptions,

e using linguistically plausible methods for learning
patterns,

e taking actual distributions of frequencies into account.



Prospects

e Recall Humboldt’s modes of explanation

A language is the way it is because of:

1. universal cognitive or communicative constraints (I-

complexity)
2. historical accident (E-complexity)

3. the inner spirit of a nation (we’ll come back to thisin

week 4)



