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Course Overview 

• Session 1: Linear Regression   

Relationship to t-test and ANOVA; predictor coding and 
interpretation; performing tests 

• Session 2: Generalized Linear Models   

Adjusting assumptions about error distributions and the 
relationship between IVs and DVs; data types and model 
families; gamma regression; binary and ordinal logistic 
regression 

• Session 3: Generalized Linear Mixed Models   

Repeated-measures designs; random and fixed factors/effects; 
random intercepts and random slopes; ‘maximal’ GLMMs 

• Session 4: Control Predictors in Maximal GLMMs   

Confound variables and how to treat them in a maximal GLMM 
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Simple Linear Regression 

• Goal: Predict a continuous DV (y) from a continuous IV (x), 
assuming a linear relationship between the two 

 

𝑦 𝑖 = 𝛽𝑜 + 𝛽1𝑥𝑖  , 
𝑦𝑖 = 𝑦 𝑖 + 𝑒𝑖  

 

 

where 

 

𝑦 𝑖= predicted value of 𝑦𝑖 

𝑥𝑖 = value of the predictor variable 

𝛽0 = the intercept (or regression constant): the value of 𝑦 𝑖 when x = 0 

𝛽1 = the slope (or regression coefficient): the difference     

          in 𝑦 𝑖  associated with a one-unit increase in x 

𝑒𝑖 = prediction error (residuals) 
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Original data 

Simple Linear Regression 

• The ‘best fitting’ line through an 𝑥 ∙ 𝑦 
data cloud is one that minimizes the 
residuals (prediction errors); formally: 

                    𝑚𝑖𝑛( 𝑦 − 𝑦 2)  
 

• This can be achieved by setting 
         

         𝛽1 = 
𝐶𝑂𝑉𝑥𝑦

𝑠2
 =  𝒓 ∙ (𝒔𝒚 𝒔𝒙)  , 

 

         𝛽0 = 𝑦  − 𝛽1 ∙ 𝑥   

 
• Where 𝒓 is indeed the good old Pearson 

correlation coefficient! 
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Original data 

Simple Linear Regression 

• The ‘best fitting’ line through an 𝑥 ∙ 𝑦 
data cloud is one that minimizes the 
residuals (prediction errors); formally: 

                    𝑚𝑖𝑛( 𝑦 − 𝑦 2)  
 

• This can be achieved by setting 
         

         𝛽1 = 
𝐶𝑂𝑉𝑥𝑦

𝑠2
 =  𝒓 ∙ (𝒔𝒚 𝒔𝒙)  , 

 

         𝛽0 = 𝑦  − 𝛽1 ∙ 𝑥   

 

x 

Original data plus regression line 
such that  𝒚 − 𝒚 𝟐 is minimized 

Once we’ve determined the values for 𝜷𝟎 (intercept) and 𝜷𝟏 (slope), we can 
more or less reliably predict what the most likely y would be at a given x,  

e.g. for x = 5:   𝒚 = 𝜷𝟎 + 𝜷𝟏 ∙ 𝟓 
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Let’s do this in R 

• Example data:  Lexical decision experiment (real data) 
– 144 words (and plenty of non-words as ‘fillers’, which are not included) 

– Each word presented either in UPPER or lowercase font (variable spelling) 

– Task: decide as quickly and accurately as possible (button press) whether a 
given stimulus is an actual word 

– Also recorded for each word: lexical frequency (log10 per million word counts) 

– 33 subjects, but data are aggregated up to item level (not trial-by-trial data!) 

• Questions:  
– Is there a linear relationship between lexical frequency and RT? 

– How can we predict RT from lexical frequency? 



Let’s do this in R 

# Simple regression example data  

RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv") 

head(RT.data) 

# Plot y against x 

x <- RT.data$logfreq 

y <- RT.data$RT 

plot(x, y,  

     xlab = "log lex. frequency",  

     ylab = "RT(ms)") 

# Calculate intercept (beta_0) and  

# slope (beta_1) "on foot" 

slope <- cor(x, y) * (sd(y) / sd(x)) 

intercept <- mean(y) - slope * mean(x) 

 

# Look at what we’ve done 

c("beta_0" = intercept, "beta_1" = slope) 

• Thus, we can predict that with every 1-unit  
increase in x (logfreq) there is a 25.5 ms 
decrease in y (RT) : 
 𝑹𝑻 = 𝟕𝟎𝟐 𝒎𝒔 − 𝟐𝟓. 𝟓 𝒎𝒔 ∙ 𝒍𝒐𝒈𝒇𝒓𝒆𝒒 



Function lm(…) 

# Using function lm() 

LF1 <- lm(y ~ x) 

summary(LF1) 

# Alternatively 

LF2 <- lm(RT ~ logfreq, data=RT.data) 

summary(LF2) 

• Things to look out for: 

– Coefficients (intercept and slope); one-sample t tests against zero 

• Use coefficients for prediction (model equation) 

– R-squared: goodness of fit  
• how much variance in the DV is explained by the model (here, containing only one 

continuous IV) 



Other useful queries 

coefficients(LF2) # model coefficients (=> vector) 

confint(LF2, level=0.95) # (95%) CIs for model parameters (=> matrix)  

fitted(LF2); predict(LF2) # predicted values (=> vector) 

residuals(LF2) # residuals (=> vector); observed – predicted values of DV  

anova(LF2) # anova table (=> data frame) 

vcov(LF2) # covariance matrix for model parameters (=> matrix) 

influence(LF2) # regression diagnostics (=> vector) 

# Example 1: 99% CIs on coefficients 

> confint(LF2, level=0.99) 

# Example 3: Predicted y for a hypothetical x, given a  

# linear fit 

Pred.y <- function(hypo.x, fit) 

  unname(coefficients(fit)[1] +  

           coefficients(fit)[2] * hypo.x) 

 

> Pred.y(1.234, LF2) 

# Example 2: Coefficients 

> coefficients(LF2) 

> Pred.y(1, LF2) – Pred.y(0, LF2) 

Picture (makes this slide look nicer..) 



Plot Regression Line 

# Scatterplot with regression line, 

# using previous linear fit LF2 

# Plot y against x 

x <- RT.data$logfreq 

y <- RT.data$RT 

plot (x, y,  

      xlab = "log lex. frequency",  

      ylab = "RT(ms)") 

abline(LF2, col="red", lwd=2) 

title("RT as function of log frequency") 



Plot Confidence Interval 

# Scatterplot with regression line, 

# using previous linear fit LF2 

# Plot y against x 

x <- RT.data$logfreq 

y <- RT.data$RT 

plot (x, y,  

      xlab = "log lex. frequency",  

      ylab = "RT(ms)") 

abline(LF2, col="red", lwd=2) 

title("RT as function of log frequency") 

# Generate new sequence of x-values 

new.x <- seq(-1,4.5, by=0.05) 

 

# Determine CI for each of the new x-values using predict() 

# NB: Here, we are using 99% CIs 

prd <- predict(LF2, newdata=data.frame(logfreq=new.x), 

               interval="confidence", level=0.99) 

 

# Add the lower and upper CI limits as lines to the plot 

lines(new.x, prd[,2], col="blue", lty=1, lwd=1) 

lines(new.x, prd[,3], col="blue", lty=1, lwd=1) 

> head(prd) 



Assumptions 

• Variables are measured on at least interval scale (continuous data) 
– Can theoretically range from −∞ to +∞ 

– Exception: Categorical predictor variables (dummy-coding etc.) 

• Linearity / additivity 

• Homoscedasticity 
– Constant variance of residuals over the entire x-range, e.g. 

 

 

 

 

 
 

• Normality of residuals 
– 𝑒𝑖 ~ 𝑁(0, 𝜎) 
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Diagnostic Plots 

# diagnostic plots 

# formatted as 2*2 matrix 

layout(matrix(c(1,2,3,4),2,2)) 

plot(LF2) 



Summary 

• Simple (bivariate) linear regression is a useful tool for prediction and 
‘hypothetical forecasting’ 

– E.g., what would be the most likely y for a very large x which I haven’t 
actually observed? 

• Quality of prediction (→ confidence in predicted values) depends on 
how much variance is explained by the regression line 

– High 𝑅2means good fit of the model to the data (reliable prediction) 

• Other frequent use: de-trending of data (by subtracting 𝑦 s from the ys), 
e.g. to eliminate the influence of a “control variable” 

 

 
original de-trended 



What if our predictor (x) is categorical? 

• That’s actually no problem for regression 

• Indeed, we shall see that (say) an independent measures t-test is just 
“regression in disguise”… 

 

 
# Simple regression example data  

RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv") 

• Let’s dichotomize our logfreq variable by performing a median-split into 
low-frequency vs. high-frequency words  

 

 

# Median-split logfreq into two categories 

RT.data$freqCAT <- ifelse(RT.data$logfreq > median(RT.data$logfreq), 

                          "high", "low") 

head(RT.data) 

# Simple regression example data  

RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv") 



Categorical Predictor 

• Unfortunately, regression doesn’t actually work with character variables 
(“low” vs. “high”) as predictors 

• Let’s use Dummy Coding instead (“low” is coded as 0 and “high” as 1): 

 

 
• And then perform a linear regression of RT as a function of freqCAT_dummy  

 

 

# Perform linear regression (RT as a function of freqCAT_dummy) 

catmod <- lm(RT ~ freqCAT_dummy, data = RT.data) 

summary(catmod) 

# "Dummy coding" of freqCAT 

RT.data$freqCAT_dummy <- ifelse(RT.data$freqCAT == "low",0,1) 



Categorical Predictor 

• Unfortunately, regression doesn’t actually work with character variables 
(“low” vs. “high”) as predictors 

• Let’s use Dummy Coding instead (“low” is coded as 0 and “high” as 1): 

 

 
• And then perform a linear regression of RT as a function of freqCAT_dummy  

 

 

# Perform linear regression (RT as a function of freqCAT_dummy) 

catmod <- lm(RT ~ freqCAT_dummy, data = RT.data) 

summary(catmod) 

# "Dummy coding" of freqCAT 

RT.data$freqCAT_dummy <- ifelse(RT.data$freqCAT == "low",0,1) 

• Overall, “high” frequency words (x = 1) are 
responded to 69.453 ms faster (negative 
slope) than “low” frequency words (x = 0) 

• This effect is significant at t(142) = -5.393; 
p = 0.0000000282 

• The mean RT for “low frequency” words (x 
= 0) is 694.49 ms  



Categorical Predictor 

• Alternatively, we could perform a t-test, and get the exact same results: 

 

• The independent t-test (equal variance assumed) really is just 
regression in disguise!  

 

 

# The same as t-test (note: here we can use character variables) 

t.test(RT ~ freqCAT, var.equal = TRUE, data = RT.data) 



Categorical Predictor 

• Instead of Dummy Coding (0, 1), we could have used Deviation 
Coding (-0.5, 0.5) of our categorical predictor in lm():   

 # "Deviation coding" of freqCAT 

RT.data$freqCAT_dev <- ifelse(RT.data$freqCAT == "low",-0.5,0.5) 

 

# Perform linear regression (RT as a function of freqCAT_dev) 

catmod2 <- lm(RT ~ freqCAT_dev, data = RT.data) 

summary(catmod2) 

• The crucial difference is that the intercept 
(predicted RT at x = 0) now indexes the 
grand average RT rather the mean RT for 
“low” frequency words (cf. dummy coding 
results)! 
 

• Everything else stays the same 



Multiple Regression 

• Now, we will extend the idea of linearly predicting a DV (𝒚) from a single 
IV (𝒙) to the case where we linearly predict 𝒚 from a combination of 
several unrelated IVs (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌); multiple linear regression 

• Various applications / goals / purposes: 

– Prediction 

– Confirmatory testing of individual predictors 

• E.g., amongst a range of theoretically relevant IVs, does a specific IV of 
interest make a significant contribution to the prediction of 𝑦? 

• Which IV is ‘more important’ in predicting 𝑦? 

– Exploratory ‘model selection’ 

• Find a model that strikes an optimal compromise between number of 
IVs (the fewer the better – Occam’s razor) and quality of prediction 
(high 𝑅2) → 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 for model comparison 

• Stepwise regression heuristics (forward, backward, etc.) 

 

 



“intercept” or “constant”  

                 (𝛽0) 

“slope”(𝛽1) 

𝑦  =  𝛽0 + 𝛽1𝑥   →   𝑦𝑖 = 𝑦 + 𝑒𝑖 ,  𝑒𝑖~𝑁(0, 𝜎)  

one criterion  

one predictor 

Simple (Bivariate) 

Linear Regression 

Multiple Linear Regression 

one criterion  

several predictors 

𝑦  = 𝛽0  + 𝛽1𝑥1 + 𝛽2𝑥2 +  … + 𝛽𝑘𝑥𝑘 

 

→ 𝑦𝑖 = 𝑦 + 𝑒𝑖  ,  𝑒𝑖~𝑁(0, 𝜎) 

Multiple Regression 



Multiple Regression 

• The general purpose of multiple regression is to learn 
more about the linear relationship between several 
independent variables (predictors) and a single dependent 
variable (criterion).  

• Multiple regression works much the same way as simple 
linear regression  

• In the multivariate case (when there is more than one 
predictor), the regression line cannot be visualized in a 
two-dimensional space, but it can be computed just as 
easily (a line in a k+1-dimensional space, where k stands 
for the number of predictors) 



An Example 

• All imaginary! 

• A fictitious university is concerned about low class attendance by students. 
Based on available data (including student feedback etc.) from 40 courses held 
on campus last year, they try to determine which factors contribute to class 
attendance in what way. 

• Class attendance is measured as the average percentage of students attending 
a given course in relation to the total number of students enrolled in that 
course.  

• Of particular interest are four predictor variables:  
– How much the course contributes to the students’ grade (variable PercWeight, 

ranging from 5% to 35%) 

– The quality of the online materials for the course, including lecture notes, podcasts 
etc. (variable OnlineMat, average student rating from 1 = “poor quality” to 5 = 
“excellent quality”) 

– At what day of the week the course is held (variable DaysFromMonday: 0=Monday, 
1=Tuesday, 2=Wednesday, 3=Thursday, 4=Friday) 

– How engaging the lecturer is (variable Engaging, average student rating from 1 = 
“very boring” to 5 = “very engaging”) 



Let’s do some R 

# Multiple regression example data  

courses.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/Courses.csv") 

 

> head(RT.data) 



Multicollinearity 

• Standard multiple regression actually assumes that predictor variables are 
independent from one another 

• If predictors are strongly correlated, coefficient estimates become unreliable 
and difficult to interpret. 

• A ‘quick and dirty’ way of testing this is by checking correlation matrices 

# Correlation matrix considering only the predictors (variables 2-5 in original  

# data-frame): 

> cor(as.matrix(courses.data[2:5])) 

• No huge correlations – good! 



Output 

# Running multiple regression using lm() 

courses.fit <- lm(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging,  

                  data = courses.data) 

summary(courses.fit) 

• Thus: 

o Attend = 64.5 + 0.54*PercWeight – 2.12*OnlineMat – 1.38*DaysFromMonday + 0.99*Engaging (+e) 

o Model explains (fake) data very well : R-squared = 0.72 

o The slope coefficient for Engaging is not significantly different from zero 



Standardized Coefficients (“betas”) 

• Qualitatively, we can see that students attend more when 
– Courses contribute more to the final mark 

– Courses have poorer quality online materials 

– Courses take place closer to Monday than to Friday 

– Courses are given by more engaging lecturers (?) 
 

• What about “relative importance” of predictors? 
– Perhaps easier to see when predictors and criterion are standardized (on 

the same scale; mean=0; SD = 1) 

– “Beta-coefficients” 

 

 

 
 



Standardized Coefficients (“betas”) 

# Scale the data (by default, center=TRUE [subtract mean], and  

# scale=TRUE [divide by SD]) and run lm() again 

courses.data2 <- data.frame(scale(courses.data)) 

courses.fit2 <- lm(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging, 

                   data = courses.data2) 

summary(courses.fit2) 

• Note changes in parameter 
estimates & residuals; 
everything else (R-squared, t-
tests, etc.) stays the same as 
before  

• Use 
coefficients(courses.fit2) 
to extract only the parameters 
of interest 

• Warning: Do not use these 
values for prediction (unless 
you want to predict everything 
on SD-unit scales) 



Standardized Coefficients (“betas”) 

Interpretation: 

• Attendance increases by 1 SD unit with 

 a 0.72 SD increase in PercWeight + 

 a 0.28 SD decrease in OnlineMat + 

 a 0.23 SD decrease in DaysFromMonday + 

 a 0.14 SD decrease in Engaging 
 

• PercWeight is clearly the most important predictor (well, that’s 
sort of evident from the t-statistics already…) 

• Caution: Whether “betas” can be directly interpreted in terms of 
importance is debatable (better consider CIs for the betas). 
 

 
 



Diagnostics 

All fine (more or less) 

Fake data! 

 
 



Model Comparison 

• E.g., do we really need to include Engaging to fit the current 
data accurately?   
 

 
 

# Fit Model with and without “Engaging” and compare the models using anova() 

full.fit <- lm(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging, 

               data = courses.data) 

noteng.fit <- lm(Attend ~ PercWeight + OnlineMat + DaysFromMonday,  

                 data = courses.data) 

anova(noteng.fit, full.fit) 

• The full model does not seem to significantly improve on the 
model without Engaging 
 

 
 



Model Comparison (II) 

> summary(full.fit) > summary(noteng.fit) 

• Things to note: 

– Coefficient estimates are not the same (“context dependency” of estimates) 

– If we use Adjusted R-squared as criterion (full: 0.684, noteng: 0.675), we’d probably better keep 
Enagagement in the model! 

– Adjusted R-squared = R-squared plus penalty for increasing number of model parameters: 

• See e.g. http://www.graphpad.com/guides/prism/6/curve-fitting/index.htm?reg_interpreting_the_adjusted_r2.htm 

 

 

 

 
 



Model Comparison: Discussion 

• Sophisticated algorithms available to select the “best” model 
from a candidate set of predictors (“stepwise” regression) 

• However, results are strongly dependent on the inclusion criteria 
used, direction of testing (forward/backward), ordering of effects 
etc. 

• Hypothesis driven vs. data driven – which approach? 

• Depends on your actual research goals  
– Confirmatory (aim: generalisation)  If you wish to test hypotheses about a 

specific set of theoretically relevant predictors, test all predictors 
simultaneously (regardless of whether they ‘improve the fit’ or not) 

– Exploratory (aim: hypothesis-generation)  If you have a lot of potentially 
relevant predictor variables for your current data, use a heuristic model 
selection approach to obtain a ‘parsimonious’ model of your data (aim: 
hypothesis-generation) 

• Be clear about it!  
–  Don’t try to ‘sell’ an exploratory analysis as confirmatory or vice versa 

 



More Complex Models 

• The previous models only contained continuous/categorical 
predictors as main effect terms 

• In fact, this is the typical use of multiple regression  

• However, using the function lm()in R, you can actually specify 
and test more complex types of regression models (including 
interactions, polynomial relationships etc.) 

– All you need to do is to adjust the model formula in lm(), using 
appropriate syntax 

• It is also possible to include categorical predictors 

– This requires numerical coding of the categorical predictor levels in 
a meaningful way 

 



Quick Tour: Formulae  

• Shamelessly stolen from http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html 

 
 

 

 

 

http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html


Quick Tour: Categorical Predictor Coding 

See also, e.g.:  
 
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/ 
 

http://talklab.psy.gla.ac.uk/tvw/catpred/ 
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Back to our initial example… 

• Example data:  Lexical decision experiment (real data) 
– 144 words (and plenty of non-words as ‘fillers’, which are not included) 

– Each word presented either in UPPER or lowercase font (variable spelling) 

– Task: decide as quickly and accurately as possible (button press) whether a 
given stimulus is an actual word 

– Also recorded for each word: lexical frequency (log10 per million word counts) 

– 33 subjects, but data are aggregated up to item level (not trial-by-trial data!) 

• New Questions:  
– Does the spelling of the words (UPPER vs. lowercase) also have an influence 

on RT?  

– Do spelling and lexical frequency interact in producing different RTs? 

• Different slopes for lexical frequency dependent on levels of spelling 



Back to our initial example… 

# Initial example data 

RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv") 

head(RT.data) 

# Let’s numerically code the variable ‘spelling’ first 

RT.data$dummy_SP <- ifelse(RT.data$spelling=="lower",0,1) # dummy coding 

RT.data$deviat_SP <- RT.data$dummy_SP - mean(RT.data$dummy_SP) # deviation coding 

head(RT.data) 

– dummy_SP takes the values 0 (for lowercase spelling) and 1 (for uppercase spelling) 

– deviat_SP is coded as −0.5 (lowercase) and 0.5 (uppercase), respectively 

 
 



Let’s run lm()to address our new 
questions 

# “Outsourcing” model formulae: 

model.dummy <- "RT ~ dummy_SP + logfreq + dummy_SP:logfreq" 

model.deviat <- "RT ~ deviat_SP + logfreq + deviat_SP:logfreq" 

# Fitting both models 

fit.dummy <- lm(model.dummy, data=RT.data) 

fit.deviat <- lm(model.deviat, data=RT.data) 

> summary(fit.dummy) > summary(fit.deviat) 

• Effect of spelling (at logfreq = 0) is significant(ish): 42 ms higher RTs with UPPER than lowercase spelling 

• Interaction is not significant (although estimate indicates that logfreq slope is 14 ms more negative with UPPER 
than lowercase spelling) 

• Importantly, notice differences in estimates for intercept and logfreq main effect! 

 



Let’s run lm()to address our new 
questions 

# “Outsourcing” model formulae: 

model.dummy <- "RT ~ dummy_SP + logfreq + dummy_SP:logfreq" 

model.deviat <- "RT ~ deviat_SP + logfreq + deviat_SP:logfreq" 

# Fitting both models 

fit.dummy <- lm(model.dummy, data=RT.data) 

fit.deviat <- lm(model.deviat, data=RT.data) 

> summary(fit.dummy) > summary(fit.deviat) 

• Effect of spelling (at logfreq = 0) is significant(ish): 42 ms higher RTs with UPPER than lowercase spelling 

• Interaction is not significant (although estimate indicates that logfreq slope is 14 ms more negative with UPPER 
than lowercase spelling) 

• Importantly, notice differences in estimates for intercept and logfreq main effect! 

 

When the categorical predictor is dummy-coded (0,1): 
• The intercept indexes the mean RT for dummy_SP = 

0 (lowercase spelling) and logfreq = 0 
• The logfreq “main effect” is actually not a main 

effect – it’s the logfreq slope at dummy_SP = 0 
(conceptually: the “simple effect” of logfreq, given 
lowercase spelling) 

• You would obtain the same estimate (but not SE) for 
this coefficient if you ran 

lm(RT~logfreq, data=subset(RT.data, dummy_SP==0) 



Let’s run lm()to address our new 
questions 

# “Outsourcing” model formulae: 

model.dummy <- "RT ~ dummy_SP + logfreq + dummy_SP:logfreq" 

model.deviat <- "RT ~ deviat_SP + logfreq + deviat_SP:logfreq" 

# Fitting both models 

fit.dummy <- lm(model.dummy, data=RT.data) 

fit.deviat <- lm(model.deviat, data=RT.data) 

> summary(fit.dummy) > summary(fit.deviat) 

When the categorical predictor is deviation-coded 
(−0.5, 0.5): 
• The intercept indexes the mean RT at logfreq = 0 
• The logfreq effect is a proper main effect (overall 

slope associated with logfreq) 

Therefore: 
In designs including interactions: 
• Use deviation coding to assess main effects 
• Use dummy coding to assess simple effects 



Centring of Predictors 

• Deviation coding of a categorical predictor is in fact “mean-
centred” dummy coding of that predictor 

• In most (if not all) applications, it makes sense to mean-centre 
continuous predictors as well! 

• If all predictors are mean-centred, then 
– The model intercept indexes the grand average of the DV 

– “Main effect parameters” truly index main effects 

• Dummy-coding is, however, useful to perform follow-up 
‘simple effects’ analyses (see further down…) 



Lets do this again… 

• Mean-centre all the predictors and run lm() again:  

# "deviation coding" (mean-centred dummy coding) of spelling - as before 

RT.data$deviat_SP <- scale(ifelse(RT.data$spelling=="lower",0,1), scale=FALSE)  
 

# mean-centring of the continuous logfreq variable as well 

RT.data$cent_LFRQ <- scale(RT.data$logfreq, scale = FALSE) 
 

# Perform linear regression again 

# Note: A*B in formula is just shorthand for A+B+A:B   

centmod <- lm(RT ~ deviat_SP*cent_LFRQ, data = RT.data) 

summary(centmod) 

• Now the intercept is 659.763 ms (= grand 
average RT)! 

• The effect of deviat_SP is a true main 
effect (estimated given average word 
frequency) 

• The effect of cent_LFRQ is a true main 
effect (estimated given average spelling)  



Centring of LogFreq 

# Plot RT as a function of logfreq 

plot(RT.data$RT ~ RT.data$logfreq,  

     xlab = "logfreq", ylab = "RT",  

     main = "Non-centred") 

abline(v = 0, col="red", lwd=3, lty=3) 

# Plot RT as a function of cent_LFRQ 

plot(RT.data$RT ~ RT.data$cent_LFRQ,  

     xlab = "logfreq", ylab = "RT",  

     main = “Centred") 

abline(v = 0, col="red", lwd=3, lty=3) 



Prediction 

• Given the output from the previous omnibus analysis (with mean-centred 
predictors), what would be the predicted mean RT for a word with, say, 

– a cent_LFRQ value of 2.0 and lowercase spelling  ? 

Answer: 
 

659.763 (grand average)    + 

17.647 × (−.5) (lowercase spelling)    + 

−25.518  × 2.0 (cent_LFRQ = 2)    + 
−14.315 × (−.5 × 2.0) (interaction) 
 

=  650.219 ms 

 



Simple effects (1) 

• Let’s pretend the interaction (deviat_SP:cent_LFRQ) were significant, and we 
were interested in the ‘simple effect’ of word frequency at each level of spelling 

• The way to find out would be to use dummy coding of the spelling predictor  

# “dummy coding" of spelling – “lower“ = 0  

RT.data$dummy_SPL0 <- ifelse(RT.data$spelling=="lower",0,1)  
 

 

# Perform linear regression again   

SPL_mod <- lm(RT ~ dummy_SPL0*cent_LFRQ, data = RT.data) 

summary(SPL_mod) 

• With lower case spelling, every one-unit 
increase in word frequency leads to 
18.361 ms faster RTs 

• This simple effect is significant 



Simple effects (2) 

• Let’s pretend the interaction (deviat_SP:cent_LFRQ) were significant, and we 
were interested in the ‘simple effect’ of word frequency at each level of spelling 

• The way to find out would be to use dummy coding of the spelling predictor  

# “dummy coding" of spelling – “upper“ = 0  

RT.data$dummy_SPU0 <- ifelse(RT.data$spelling=="lower",1,0)  
 

 

# Perform linear regression again   

SPU_mod <- lm(RT ~ dummy_SPU0*cent_LFRQ, data = RT.data) 

summary(SPU_mod) 

• With upper case spelling, every one-unit 
increase in word frequency leads to 
32.675 ms faster RTs 

• This simple effect is also significant (even 
stronger than with lowercase spelling, but 
not reliably stronger) 



Factorial designs: Good practise 

• For omnibus analysis, mean-centre your predictor 
variables to establish main effects and interactions 
(2-way, 3-way etc.) 
– use deviation or sum coding for categorical predictors 

– mean-centre your continuous predictors as well! 

• For follow-up tests, use dummy-coding (0,1) of a 
‘conditioning predictor’ to decompose higher-order 
effects into simpler ones, e.g. 
– 3-way interactions into simple 2-way interactions 

– 2-way interactions into simple main effects   

– Etc. 



F-values instead of t-values 

• We have seen that lm() can perform pretty much the same job as AN(C)OVA, 
including 

– Categorical and continuous IVs 

– Main effects of, and interactions between IVs 

• However, the summary output only provides t-tests on parameter estimates, e.g. 

 

 

 

 

 

 

 

 

 
 

 

 

# Fitting an lm() on our RT data (mean-centred predictors) 

centmod <- lm(RT ~ deviat_SP * cent_LFRQ, data = RT.data) 

summary(centmod) 

Question:  
How can we get F-values 
for reporting? 



anova() and Anova() 

# Using the base function anova() 

anova(centmod) 

 

• anova()uses “sequential” Type-I 
variance decomposition 

• Cumulative addition of effects (in the 
order specified by the model formula): 

– deviat_SP is tested on top of a model 
containing only intercept term (𝛽0) 

– cent_LFRQ is tested on top of  

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 

– deviat_SP:cent_LRFQ is tested on top of 

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

• No strictly simultaneous testing of 
effects! 

 

 

 

# Using the function Anova() 

# (part of ‘car’ package) 

library(car) 

Anova(centmod, type="III") 

• Anova()is more flexible due to type 
argument  

• Here: Type-III variance decomposition 

• Simultaneous testing of effects: 
– deviat_SP is tested on top of 

         𝛽0 + 𝛽1𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄 + 𝛽2𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃: 𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

– cent_LFRQ is tested on top of 

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃: 𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄 

– deviat_SP:cent_LFRQ is tested on top of 

         𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

 

 



anova() and Anova() 

# Using the base function anova() 

anova(centmod) 

 

• anova()uses “sequential” Type-I 
variance decomposition 

• Cumulative addition of effects (in the 
order specified by the model formula): 

– deviat_SP is tested on top of a model 
containing only intercept term (𝛽0) 

– cent_LFRQ is tested on top of  

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 

– deviat_SP:cent_LRFQ is tested on top of 

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

• No strictly simultaneous testing of 
effects! 

 

 

 

# Using the function Anova() 

# (part of ‘car’ package) 

library(car) 

Anova(centmod, type="III") 

• Anova()is more flexible due to type 
argument  

• Here: Type-III variance decomposition 

• Simultaneous testing of effects: 
– deviat_SP is tested on top of 

         𝛽0 + 𝛽1𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄 + 𝛽2𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃: 𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

– cent_LFRQ is tested on top of 

        𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃: 𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄 

– deviat_SP:cent_LFRQ is tested on top of 

         𝛽0 + 𝛽1𝑑𝑒𝑣𝑖𝑎𝑡_𝑆𝑃 + 𝛽2𝑐𝑒𝑛𝑡_𝐿𝐹𝑅𝑄  

 

 

- Here, the two approaches make no difference (balanced data!) 
 

- For unbalanced data, it could make a difference what kind of variance decomposition 
you are using 
 

- For more info, see https://www.r-bloggers.com/anova-%E2%80%93-type-iiiiii-ss-explained/ 
 

- Type-III variance decomposition is perhaps the most generalizable option (it’s also the 
default in stats packages such as SPSS, STATISTICA, SAS, etc.)   
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Categorical predictors with more than two levels 

• Can be handled using a regression approach (e.g., lm()) as well, but it’s a 
bit more tricky than with 2-level predictors 

• Let’s try an example with 

– Two categorical predictors: A={a1, a2, a3}; B={b1, b2}; a 3×2 design  

– Continuous DV (ranging from 344 to 2934) 

– 90 cases 

 # The data: 

dat <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/threeleveldata.csv") 

head(dat) 



Categorical predictors with more than two levels 

• General rule for coding: given k levels of a categorical predictor, you’ll 
need k−1 coding variables for that predictor in the regression model; here: 
– 3−1 = 2 coding variables for predictor A 

– 2−1 = 1 coding variable for predictor B 
  

 
# Deviation coding of both predictors: 

dat$a1a2 <- scale(ifelse(dat$A=="a2",1,0), center=TRUE, scale=FALSE) 

dat$a1a3 <- scale(ifelse(dat$A=="a3",1,0), center=TRUE, scale=FALSE) 

dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE) 

B 

b1 

b2 

Bdv 

−0.5 

0.5 

A 

a1 

a2 

a1a2 

−0.33 

0.66 

a3 −0.33 

a1a3 

−0.33 

0.66 

−0.33 

∑ 

−0.66 

0.33 

0.33 

Resulting coding: 



Categorical predictors with more than two levels 

• General rule for coding: given k levels of a categorical predictor, you’ll 
need k−1 coding variables for that predictor in the regression model; here: 
– 3−1 = 2 coding variables for predictor A 

– 2−1 = 1 coding variable for predictor B 
  

 
# Deviation coding of both predictors: 

dat$a1a2 <- scale(ifelse(dat$A=="a2",1,0), center=TRUE, scale=FALSE) 

dat$a1a3 <- scale(ifelse(dat$A=="a3",1,0), center=TRUE, scale=FALSE) 

dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE) 

B 

b1 

b2 

Bdv 

−0.5 

0.5 

A 

a1 

a2 

a1a2 

−0.33 

0.66 

a3 −0.33 

a1a3 

−0.33 

0.66 

−0.33 

∑ 

−0.66 

0.33 

0.33 

Resulting coding: 

Reference category 



Categorical predictors with more than two levels 

• General rule for coding: given k levels of a categorical predictor, you’ll 
need k−1 coding variables for that predictor in the regression model; here: 
– 3−1 = 2 coding variables for predictor A 

– 2−1 = 1 coding variable for predictor B 
  

 
# Deviation coding of both predictors: 

dat$a1a2 <- scale(ifelse(dat$A=="a2",1,0), center=TRUE, scale=FALSE) 

dat$a1a3 <- scale(ifelse(dat$A=="a3",1,0), center=TRUE, scale=FALSE) 

dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE) 

B 

b1 

b2 

Bdv 

−0.5 

0.5 

A 

a1 

a2 

a1a2 

−0.33 

0.66 

a3 −0.33 

a1a3 

−0.33 

0.66 

−0.33 

∑ 

−0.66 

0.33 

0.33 

Resulting coding: 

Reference category 

𝒂𝟐 − 𝒂𝟏 𝒂𝟑 − 𝒂𝟏 



Categorical predictors with more than two levels 

# Determine the linear fit (including all main effects and interactions): 

fit <- lm(DV ~ a1a2 + a1a3 + Bdv + a1a2:Bdv + a1a3:Bdv, data=dat) 

summary(fit) 

← mean(DV) 
← a2 – a1 
← a3 – a1 
← b2 – b1 
← (a2|b2 – a1|b2) - (a2|b1 – a1|b1)  
← (a3|b2 – a1|b2) - (a3|b1 – a1|b1)  

Interpretations: 



Categorical predictors with more than two levels 

# Determine the linear fit (including all main effects and interactions): 

fit <- lm(DV ~ a1a2 + a1a3 + Bdv + a1a2:Bdv + a1a3:Bdv, data=dat) 

summary(fit) 

Not so nice: 
• We now have 2 coefficients for the main effect of A, and 2 coefficients for the A×B 

interaction 
• t-values instead of F-values 



Categorical predictors with more than two levels 

• How can we get F-values for  

– the overall main effect of A (3 levels => 2 degrees of freedom) 

– the overall main effect of B (2 levels => 1 degree of freedom) 

– the A × B interaction (=> (3-1) × (2-1) = 2 degrees of freedom) 
 

• The trick is to use anova()model comparisons, testing 
a model that excludes the parameters for a given effect 
of interest against the full model (previously stored as 
“fit”) 

 
  

 



Categorical predictors with more than two levels 
# Determine the linear fit including all effects except those related to main  

# effect of A 

fit_no_A <- lm(DV ~ Bdv + a1a2:Bdv + a1a3:Bdv, data=dat) 

# and compare with previous fit (including all effects) 

anova(fit_no_A, fit) 

Main effect of A is significant at: 
F(2, 84) = 45.365; p < .001 

# Do the same with main effect of B 

fit_no_B <- lm(DV ~ a1a2 + a1a3 + a1a2:Bdv + a1a3:Bdv, data=dat) 

anova(fit_no_B, fit) 

Main effect of B is significant at: 
F(1, 84) = 15.222; p < .001 

# And finally, the interaction: 

fit_no_AB <- lm(DV ~ a1a2 + a1a3 + Bdv, data=dat) 

anova(fit_no_AB, fit) 

The A×B interaction is significant at: 
F(2, 84) = 4.826; p = .01 



Just to confirm: The same in SPSS (yuk!)… 



Other categorical predictor coding schemes 

• There are numerous other schemes for coding categorical 
predictors in regression analysis, see e.g. 
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-
systems-for-categorical-variables/ 

• Different coding schemes may be used to test different linear 
hypotheses on the data 

• While we cannot go through all of them here, the example of 
backward difference coding will be explained in more detail 
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Example: Backward difference coding 

• Suppose the three levels of the categorical predictor 
A in our previous example data set had an ordinal 
interpretation: a1 < a2 < a3 

• If so, it would make sense to use a coding scheme 
whereby ‘successive’ levels are incrementally 
compared with one another, i.e. 

– one contrast parameter encodes a2 – a1   

– the other contrast parameter encodes a3 – a2 

• => backward difference coding 
  

 



# Mean-centred backward difference coding of A: 

dat$a1a2 <- scale(ifelse(dat$A=="a2" | dat$A=="a3",1,0), scale=FALSE) 

dat$a2a3 <- scale(ifelse(dat$A=="a3",1,0), scale=FALSE) 

# deviation coding of B, as before 

dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), scale=FALSE) 

Example: Backward difference coding 

B 

b1 

b2 

Bdv 

−0.5 

0.5 

A 

a1 

a2 

a1a2 

−0.66 

0.33 

a3 0.33 

a2a3 

−0.33 

0.66 

−0.33 

∑ 

−0.99 

0.00 

0.99 

Resulting coding: 



# Mean-centred backward difference coding of A: 

dat$a1a2 <- scale(ifelse(dat$A=="a2" | dat$A=="a3",1,0), scale=FALSE) 

dat$a2a3 <- scale(ifelse(dat$A=="a3",1,0), scale=FALSE) 

# deviation coding of B, as before 

dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), scale=FALSE) 

Example: Backward difference coding 

B 

b1 

b2 

Bdv 

−0.5 

0.5 

A 

a1 

a2 

a1a2 

−0.66 

0.33 

a3 0.33 

a2a3 

−0.33 

0.66 

−0.33 

∑ 

−0.99 

0.00 

0.99 

Resulting coding: 

Reference category 

𝒂𝟐 − 𝒂𝟏 𝒂𝟑 − 𝒂𝟐 



# Determine the linear fit (including all main effects and interactions): 

fit2 <- lm(DV ~ a1a2 + a2a3 + Bdv + a1a2:Bdv + a2a3:Bdv, data=dat) 

summary(fit2) 

← mean(DV) 
← a2 – a1 
← a3 – a2 
← b2 – b1 
← (a2|b2 – a1|b2) - (a2|b1 – a1|b1)  
← (a3|b2 – a2|b2) - (a3|b1 – a2|b1)  

Interpretations: 

Example: Backward difference coding 



What has changed here?... 

Previous coding of A: 
- a2 is compared to a1 
- a3 is compared to a1 

Backward difference coding of A: 
- a2 is compared to a1 
- a3 is compared to a2 

a1a2 

a1a3 

a1a2 a2a3 



Does backward difference coding affect overall 
results? => Absolutely NOT! 

# Determine the linear fit including all effects except those related to main  

# effect of A 

fit_no_Ax <- lm(DV ~ Bdv + a1a2:Bdv + a2a3:Bdv, data=dat) 

# and compare with previous fit2 (including all effects) 

anova(fit_no_Ax, fit2) 

Main effect of A is significant at: 
F(2, 84) = 45.365; p < .001 

# Do the same with main effect of B 

fit_no_Bx <- lm(DV ~ a1a2 + a2a3 + a1a2:Bdv + a2a3:Bdv, data=dat) 

anova(fit_no_Bx, fit2) 

Main effect of B is significant at: 
F(1, 84) = 15.222; p < .001 

# And finally, the interaction: 

fit_no_ABx <- lm(DV ~ a1a2 + a2a3 + Bdv, data=dat) 

anova(fit_no_ABx, fit2) 

The A×B interaction is significant at: 
F(2, 84) = 4.826; p = .01 



Backward difference coding “in action” 

• 3 Experiments, each 
with 5 × 2 design 
 

• Binary logistic mixed 
effects models 
 

• Experiments 2 and 3 
employ backward 
difference coding for 
(ordinal) 5-level 
predictor 
 

• Data and R-scripts 
available here: 

• http://www.psy.gla.ac
.uk/~christop/LexOver
lap.zip 

http://www.psy.gla.ac.uk/~christop/LexOverlap.zip
http://www.psy.gla.ac.uk/~christop/LexOverlap.zip
http://www.psy.gla.ac.uk/~christop/LexOverlap.zip


You now (hopefully) understand 

• The basics of linear regression 

• How to perform linear regression using lm()in R 

• How to specify designs with main effects and interactions 

• How predictor coding affects parameter interpretation 

• The importance of mean-centred predictor coding for omnibus 
analyses (=> main effects, interactions…) 

• How to perform follow-up tests (simple effect analyses) 

• How to derive F-statistics using anova()respectively Anova() 
 

• All you’ve learnt here will be useful when moving on to Generalized 
Linear Models and Generalized Linear Mixed Effects Models  in the 
following sessions 

  

 


