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• Generalized Linear Models (glm()) are an extension of Linear Models 
(lm()) that allow for the specification of distribution and link functions 
(via the family argument) to accommodate a variety of different data 
types: 
– categorical, count, continuous, etc. 

– Ordinal data (e.g., ratings) require a special package in R (more later) 

• This ‘generalization’ is useful if you want to model data that are not 
continuous or not normally distributed 

• When no family argument is specified, glm()assumes a normal 
distribution with identity link per default, i.e. 
family=gaussian(identity) 

• Estimation of model parameters (a.k.a. optimization) works differently in 
glm() (iterative maximum likelihood estimation), and there are also 
notable differences in the output (e.g., goodness of fit, statistics for model 
comparison, etc.) compared to lm()  

 

 



lm()versus glm() 

• lm()is for ‘standard’ linear 
models (no transformation of 
parameters and assuming 
normality of residuals) 

• glm()is a generalization of 
lm()that can be applied to a 
wider range of different data 
types (incl. binary), via 
appropriate distribution 
(variance) and link functions 

• In fact, lm(y~x,…)  
  is conceptually equivalent to 
  glm(y~x,  
      family=gaussian(identity),  

      …)  

 
 

Model families available in glm(): 

• Variance concerns distribution of 
residuals 

• Link applies a transformation to the 
model parameters and determines the 
interpretation of model coefficients 
(the latter will be given in ‘link’ units)  



Previous example: RT as a function of 
spelling and word frequency 

# Simple regression example data  

RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv") 
 

# "deviation coding" (mean-centred dummy coding) of spelling 

RT.data$deviat_SP <- scale(ifelse(RT.data$spelling=="lower",0,1), scale=FALSE) 

# mean-centring of the continuous logfreq variable  

RT.data$cent_LFRQ <- scale(RT.data$logfreq, scale = FALSE) 
 

# Perform linear regression using lm() 

lm.mod <- lm(RT ~ deviat_SP * cent_LFRQ, 

             data = RT.data) 

summary(lm.mod) 

# Perform linear regression using glm() 

glm.mod <- glm(RT ~ deviat_SP * cent_LFRQ, 

               data = RT.data, 

               family=gaussian(identity)) 

summary(glm.mod) 



Previous example: RT as a function of 
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RT.data$cent_LFRQ <- scale(RT.data$logfreq, scale = FALSE) 
 

# Perform linear regression using lm() 

lm.mod <- lm(RT ~ deviat_SP * cent_LFRQ, 

             data = RT.data) 

summary(lm.mod) 

# Perform linear regression using glm() 

glm.mod <- glm(RT ~ deviat_SP * cent_LFRQ, 
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               family=gaussian(identity)) 

summary(glm.mod) 

• No real changes between lm()and glm(), but notice 
the different goodness of fit statistics, for instance. 
• R2 and adjusted R2 in lm() 
• AIC in glm() 



Goodness of Fit: AIC 

• As an analogue to 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 in standard linear regression, 
glm()reports Akaike Information Criterion (AIC) as a goodness-of-
fit measure (bottom of summary output) 

 

 
• See http://en.wikipedia.org/wiki/Akaike_information_criterion 

• It takes into account how well the model explains the data, plus a 
penalty for model complexity  

• Note: Lower values of AIC mean better fit 

• Cannot be interpreted in an absolute sense 

• But very useful for model comparison! (see further down…) 
 

 

 

# also accessible via AIC() function  

AIC(glm.mod)  

[1] 1667.318 

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Akaike_information_criterion


Say goodbye to F-values in glm()! 

• For glm()objects (or more generally, model objects based on maximum 
likelihood estimation), anova()and Anova() report Analysis of 
Deviance Tables 

• Likelihood Ratio Chi-Square instead of F 

• No error degrees of freedom  

      (e.g., report LRχ2 = 1.869, df = 1, p = .172  for the main effect of spelling) 

 

 

 

 

# Anova() on glm() object 

library(car) 

Anova(glm.mod, type="III") 



glm()for Response Times 

 

 

 

 

• RTs are hardly ever perfectly normally distributed! 
• Characteristic positive skew in RT distributions (RTs are theoretically 

bounded  to range from 0 to +∞) 
 
 
 
 
 
 
 
 
 
 

• Some authors therefore recommend log-transforming RT data prior to 
analysis (coerce them into Normal), or model them using a Gamma 
distribution function  

      (see https://www.statlect.com/probability-distributions/gamma-distribution) 
 

 

https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution


glm()for Response Times 

 

 

 

 

• Problem with log-transformation of data (same holds true when using 

a log-link in glm()): 

– It sometimes fails (e.g. DV-values ≤ 0)  

– It affects theoretical interpretation of model coefficients because it 
effectively implements a multiplicative model of the original data: 

• Note: log(A) + log(B) = log(A×B) and log(A) - log(B) = log(A/B) 

• Change in interpretation is not always desirable  

• With, say, a family=Gamma(identity) approach in glm(), we 
maintain the assumption of additive relationships in the RT data 
(identity link), but account for a positive skew in the residuals 
(Gamma distribution), thereby potentially improving the model fit 

• With, say, a family=Gamma(log) approach in glm(), we specify a 
multiplicative model of the original  RT data (log link) and account 
for a positive skew in the residuals (Gamma distribution) 
 

 



Multiplicative (‘log-linear’) relationships 
and (certain kinds of) interactions 

 

 

 

 

Original data: Interaction 

Effect of B at a1 = 10 y-units 

Effect of B at a2 = 20 y-units 
 

 

 

Log data: No Interaction 

Effect of B at a1 = 0.3 log y-units 

Effect of B at a2 = 0.3 log y-units 
 

 

 



Previous example: RT as a function of 
spelling and word frequency 

# Perform linear regression using glm() 

glm.mod <- glm(RT ~ deviat_SP * cent_LFRQ, 

               data = RT.data, 

               family=gaussian(identity)) 

summary(glm.mod) 

# Perform glm() using Gamma(identity) 

glm.mod2 <- glm(RT ~ deviat_SP * cent_LFRQ, 

                data = RT.data, 

                family=Gamma(identity)) 

summary(glm.mod2) 

• Model coefficients (intercept and slopes for the various effects) come close between the two 
approaches, but are not exactly the same (because of different model assumptions) 

• The Gamma(identity)model (AIC = 1652.5) fits the data slightly better than the standard linear 
model (AIC = 1667.3) 

• The difference in AIC would be more dramatic with trial-level data!! 

 



What about also using a log-link? 

# Perform glm() using Gamma(identity) 

glm.mod2 <- glm(RT ~ deviat_SP * cent_LFRQ, 

                data = RT.data, 

                family=Gamma(identity)) 

summary(glm.mod2) 

• Model coefficients (intercept and slopes for the various effects) are now very different: 

• In the Gamma(identity)model, estimates and SEs are in the original  RT-units (milliseconds) 

• In the Gamma(log)model, estimates and SEs are in log(RT)-units (log milliseconds) 

• In this instance, goodness of fit stays the same (AIC = 1652.5 in each case) 

# Perform glm() using Gamma(log)  

glm.mod3 <- glm(RT ~ deviat_SP * cent_LFRQ, 

                data = RT.data, 

                family=Gamma(log)) 

summary(glm.mod3) 



So, what’s the best ‘family recipe’ for RT data…? 

 

 

 

 

• Better use your brain / good theories - not recipes! 
 

• From experience with modelling RT data (or other types of naturally 
positively skewed DVs), I can tell that Gamma(identity) yields much 
better fits than a standard linear approach (gaussian(identity)) 
 

• A better fit means better modelling of the generative processes behind 
the data, and often yields improved power  
 

• A Gamma(log) (or Gamma(inverse)) model may also make sense, but 
remember that non-identity link functions change the theoretical 
interpretation of your model coefficients (e.g., turning additive  
relations into multiplicative ones when considering the original DV) 
 

• Justify which model family you are using 
 

• Never ever ‘shop around’ for model families giving the nicest p-values! 
 



How important is the ‘correct’ family? 

 

 

 

 

• For continuous data, the ‘default’ normal distribution / 
identity link assumption (cf. ANOVA, lm()) actually does a 
fairly good job in most cases 

• ANOVA, for example, has been shown to be remarkably 
robust against violations of normality 
– If anything, such violations are detrimental to power, but not to 

Type I error rate (e.g., Khan & Rayner, 2003) 

• However, other types of data require more careful 
consideration of the correct model family (for theoretical 
and statistical reasons) 

• A prominent example are binary categorical data which 
will be discussed next  

 



Recall simple linear regression 

• Goal: Predict a continuous DV (y) from a continuous IV (x), 
assuming a linear relationship between the two 

 

𝑦 𝑖 = 𝛽𝑜 + 𝛽1𝑥𝑖  , 
𝑦𝑖 = 𝑦 𝑖 + 𝑒𝑖  

 

 

where 

 

𝑦 𝑖= predicted value of 𝑦𝑖 

𝑥𝑖 = value of the predictor variable 

𝛽0 = the intercept (or regression constant): the value of 𝑦 𝑖 when x = 0 

𝛽1 = the slope (or regression coefficient): the difference     

          in 𝑦 𝑖  associated with a one-unit increase in x 

𝑒𝑖 = prediction error (residuals) 

0 1 2 3 4

y

x

𝛽0 

𝛽1 



Assumptions 

• Both IV and DV are measured on interval scale (continuous data) 
– Can theoretically range from −∞ to +∞ 

• Linearity / additivity 

• Homoscedasticity 
– Constant variance of residuals over the entire x-range, e.g. 

 

 

 

 

 
 

• Normality of residuals 
– 𝑒𝑖 ~ 𝑁(0, 𝜎) 

 

 

0 5 10 15 20

homoscedastic

0 5 10 15 20

not homoscedastic



Binary categorical DVs 

• Sometimes the values of the DV of interest come in only two 
flavours,  i.e. 0 or 1 
– Female/Male, pregnant/not pregnant, correct/incorrect, … etc. 

• That is, what we want to do is to somehow predict the probability 
of belonging to one or the other category as a function of our IV(s) 

• Linear regression would not work in this case 
– Binary data are nominal scale (discrete), and their probabilities are bound 

between 0 and 1 (with small / large 𝑥𝑖, linear regression will result in 𝑦 𝑖-values 
<0 or >1) 

– The relationship between 𝑥 and 𝑦 will not be linear 

– Normality? The appropriate distribution for numbers of ‘1s’ in a sequence of 
independent Bernoulli (0,1) trials is actually the binomial distribution 

– Heteroscedasticity of residuals: the closer predicted probability values are to 0 
or 1, the smaller the corresponding residual variances will be (error variance 
will be greatest when predicted probability is around .5) 
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Note: For binary variables, the 
population variance is 𝑃(1)  ×  𝑃(0) 
Thus,  
     with P(1) = .5, 𝜎2 = .5 × .5 = .25 
     with P(1) = .1, 𝜎2 = .1 × .9 = .09 
     etc. 



An example 

• Let’s suppose we randomly sampled 500 Scottish adults and 
measured their body height in cm 

• I generated such a dataset using the following parameters: 

• N = 500 

• gender ~ 𝑈(0,1) => roughly 50% males 

• height | gender = 0 ~𝑁(163.5, 6.1) 

• height | gender = 1 ~𝑁(178.2, 7.0) 

 

• Goal: We want to predict a person’s gender from their body height 

– Classification problem with 

• Continuous IV (height in cm) 

• Binary DV (female = 0, male = 1) 

 

 

 

 

 

values taken from Wikipedia  



An example 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

140 150 160 170 180 190 200

Height (cm)
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• DV (male) is coded as 0 (for female) or 1 (for male) 

• If you plot the data in R using: 
 plot(gender ~ height) 

     It would look like the above 

 

 

 

 

subj_ID height gender 

1 156.8 0 

2 166.9 0 

3 164.5 0 

4 191.6 1 

5 161.5 0 

6 182.8 1 

7 180.7 1 

8 162.2 0 

9 164.4 0 

10 166.9 0 

11 178.4 0 

12 155.9 0 

13 161.1 0 

14 154.2 0 

15 161 0 

16 180.6 1 

17 162.5 0 

18 179.5 1 

19 153.3 0 

20 165.6 0 

21 184.4 1 

… … … 



An Example 

• When we look at the probability of being male (here, for 
each 5% height-bin), we see that P(gender=1) as a 
function of height follows a roughly “S-shaped” 
(sigmoid) function 

• This is a natural consequence of the two partially overlapping normal height-
distributions (one for males and one for females) 
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Logistic Function 

• The probability of being male as a function of height – or more 
generally, the probability of a given binary category 𝒚 as a function 
of 𝒙 (IV) – can be modelled by the following equation: 

𝑃(𝑦𝑖) = 
exp (𝛽𝑜 + 𝛽1𝑥𝑖)

1 + exp (𝛽𝑜 + 𝛽1𝑥𝑖)
 or 

1

1 + exp (− 𝛽𝑜 + 𝛽1𝑥𝑖 )
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 Looks suspiciously like our good old linear regression model 
- More later! 



Logistic Function 
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Odds 

• Instead of probabilities, we could also conceptualize the problem in 
terms of odds 

• What are the odds of being male given a certain probability of 
being male? 

• Answer: 𝑜𝑑𝑑𝑠 𝑚𝑎𝑙𝑒 =
𝑃 𝑚𝑎𝑙𝑒

𝑃(𝑓𝑒𝑚𝑎𝑙𝑒)
 = 
𝑃 𝑚𝑎𝑙𝑒

1 −𝑃(𝑚𝑎𝑙𝑒)
 

• More generally: 𝑜𝑑𝑑𝑠 𝑦 = 
𝑃 𝑦

1 −𝑃(𝑦)
 

• Say, if in a given sample the probability of being male is .6, the odds 
of being male are .6/.4 = 1.5, i.e. in that sample, it’s 1.5 times more 
likely to find males than females. 

• To convert odds back into probabilities, use: 𝑃 𝑦 = 
𝑜𝑑𝑑𝑠 𝑦

1+𝑜𝑑𝑑𝑠(𝑦)
 

• Probabilities and odds have different properties, e.g.: 
– 𝑃(𝑦) ranges from 0 to 1, but 𝑜𝑑𝑑𝑠(𝑦) ranges from 0 to +∞ 

 



Log Odds or “Logits” 

• The natural logarithm of 𝑜𝑑𝑑𝑠(𝑦) is called log odds or logit 

     𝑙𝑜𝑔𝑖𝑡 𝑦 = ln 𝑜𝑑𝑑𝑠 𝑦 = ln (
𝑃 𝑦

1−𝑃 𝑦
)  

 

• Where ln (𝑥) refers to the log based on Euler’s number (ca. 
2.7182818284590452353602874713527…) 
 

• Logits have the following properties: 

– If 𝑜𝑑𝑑𝑠 𝑦 =  1;  𝑃 𝑦 =  .5; 𝑙𝑜𝑔𝑖𝑡 𝑦 = 0 

– If 𝑜𝑑𝑑𝑠 𝑦 <  1;  𝑃 𝑦 <  .5; 𝑙𝑜𝑔𝑖𝑡 𝑦 < 0 

– If 𝑜𝑑𝑑𝑠 𝑦 >  1;  𝑃 𝑦 >  .5; 𝑙𝑜𝑔𝑖𝑡 𝑦 > 0 

– The logit transform fails if 𝑃(𝑦)  =  0 or 𝑃(𝑦)  =  1 

– Logits range between −∞ to +∞ 

 

 



Logit as a function of P 
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To convert logits back into probabilities, use 
the inverse logit function: 
 

 𝑃 =
exp (𝑙𝑜𝑔𝑖𝑡) 

1+exp (𝑙𝑜𝑔𝑖𝑡)
 

• In the “middle” probability 
range, small changes in P imply 
small changes in logit 

• When probabilities approach 
one of the logical boundaries (0 
or 1), small changes in P imply 
large changes in logit 

• Compensates for the 
heteroscedasticity problem 
associated with probabilities 



Interesting, but why care?.. 

• Since: 
 

𝑃(𝑦𝑖) =  
exp (𝛽𝑜 + 𝛽1𝑥𝑖)

1 + exp (𝛽𝑜 + 𝛽1𝑥𝑖)
 

• It follows that: 

𝑃(𝑦𝑖) 

1 − 𝑃(𝑦𝑖) 
= exp (𝛽𝑜 + 𝛽1𝑥𝑖) 

• And therefore: 

ln
𝑃(𝑦𝑖) 

1 − 𝑃(𝑦𝑖) 
= 𝛽𝑜 + 𝛽1𝑥𝑖 

 

• In other words: Applying a logistic function to 𝑷 𝒚  is pretty much 
the same as applying a linear function to the log odds (or logit) of 
𝑷 𝒚  - which is essentially what binary logistic regression does! 

 



Just to confirm… 

The parish of 
probabilities 

The land of logits 
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Estimation and error distribution 

• In standard linear regression, estimation is based on minimizing 
sums of squared residuals (𝑆𝑆𝑟𝑒𝑠) for which simple arithmetic 
solutions exist  

• With non-linear models (e.g., logistic), an iterative approach based 
on maximum likelihood estimation must be taken (maximising 
𝑃(𝑦|𝑥)) 

• Usually requires specification of convergence criteria such as 
maximum number of iterations and/or ‘stop’ thresholds (e.g., if 
likelihood doesn’t improve by more than .00001 then stop 
iterating). 

• Since we are basically dealing with probabilities of binary outcomes, 
the residuals cannot be normally distributed; instead logistic 
regression assumes a binomial distribution of the errors.  
 

 

 

 

 



Let’s do this in R…  

 

 

 

 

• Let’s go back to the original example (gender as a function of 
height) 

• New, smaller dataset (N = 200), but generated from the same 
parameters: 
– gender ~ 𝑈(0,1) 

– height | gender = 0 ~𝑁(163.5, 6.1) 

– height | gender = 1 ~𝑁(178.2, 7.0) 

 

 

 

# Example Data 

height.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Logist/height1.csv") 

summary(height.data) 



(height as a function of gender) 

 

 

 

 

• We can clearly see that males and females were drawn from 
different (normal) height distributions by running a t-test 

 

 

 

 

• However, we are actually interested in gender as a function of height, for 
which we need to perform a logistic regression in glm() 

 

 

 

 

# t-test with height as a function of gender 

t.test(height ~ gender, data=height.data) 



Ok, here we go… 

 

 

 

 

# Performing the binary logistic glm() 

glm.out <- glm(gender ~ height, family = binomial(logit),    

               data=height.data) 



Ok, here we go… 

 

 

 

 
The all-important coefficient estimates (in 
logit units!) 
 

Thus: 
𝑙𝑜𝑔 𝑜𝑑𝑑𝑠 𝑚𝑎𝑙𝑒

=  −61.62 +  0.36 × ℎ𝑒𝑖𝑔ℎ𝑡 
 

In other words, we can predict that for 
every 1 cm increase in height, the odds 
for being male increase by a factor of  
𝑒𝑥𝑝 (0.36)  =  1.433 times 
 
Intercept: At 0 cm body height, the 
likelihood of being male is 
exp (−61.616)

1+exp (−61.616)
= 1. 74 × 10−27  

(note: body-height is not mean-centred!) 

# Performing the binary logistic glm() 

glm.out <- glm(gender ~ height, family = binomial(logit),    

               data=height.data) 



Plot 

 

 

 

 

# Plot gender against height: 

x <- height.data$height 

y <- height.data$gender 

plot (x, y,  

      xlab = "height (in cm)",  

      ylab = "P(male)") 

title("Gender as a function of height") 

 

# Create new data frame with variables x =  

# height and y = fitted probabilities from  

# glm output 

NF <- data.frame(x=height.data$height,  

                 y=glm.out$fitted) 

 

# order the data in NF in increasing height  

NF <- NF[order(NF$x),] 

 

# draw a line using the x and y values in NF 

lines(NF$x, NF$y, type='l', col='red', lwd=2) 

 



A potentially more interesting example 

• Fabricated data (shamelessly stolen from the internet) 

• Goal: Predict the likelihood of being admitted to graduate school 
(1 = admitted; 0 = not admitted) from a combination of 3 
predictors: 
– GRE (Graduate Record Exam scores, continuous) 

– GPA (Grade Point Average, continuous) 

– UIP (Udergrad. Institution Prestige, rank scores  1 “top notch” – 4 “meh”) 

• Data from 400 imaginary “candidates”, each measured on all 4 
variables, i.e. GRE, GPA, UIP and admit (our DV) 

 

 
 

 

 

 

# Admission Data 

AM.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Logist/admission.csv") 

head(AM.data) 



Predictor coding 

# First, mean centre the continuous predictors GRE and GPA 

AM.data$GRE.cn <- AM.data$GRE - mean(AM.data$GRE) 

AM.data$GPA.cn <- AM.data$GPA - mean(AM.data$GPA) 

 

# Treat UIP as ORDINAL predictor  

# mean-centred forward-difference coding (higher means “worse“),  

# UIP=1 (“best“) serves as reference 

AM.data$UIP.2cn <- scale(ifelse(AM.data$UIP < 2,1,0), scale = FALSE) 

AM.data$UIP.3cn <- scale(ifelse(AM.data$UIP < 3,1,0), scale = FALSE) 

AM.data$UIP.4cn <- scale(ifelse(AM.data$UIP < 4,1,0), scale = FALSE) 

# (note that UIP scores are not evenly distributed in the sample) 

 

head(AM.data) 



Run binary logistic glm() 

# Run glm() 

AM.model <- glm(admit ~  

                  # main effect terms: 

                  GRE.cn + GPA.cn + UIP.2cn + UIP.3cn + UIP.4cn +   

                  # 2-way interaction terms (effect of GRE per level of UIP):  

                  UIP.2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn + 

                  # 2-way interaction terms (effect of GPA per level of UIP):  

                  UIP.2cn:GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,  

                data = AM.data, 

                family = binomial(logit)) 

• Let’s assume we were primarily interested in the main effects of 
the three predictors and in 2-way interactions between UIP 
(ordinal predictor) and each of the two continuous predictors  
(GRE and GPA) 

 

 
 

 

 

 



Results 

# Output 

summary(AM.model) 



Results 

# Output 

summary(AM.model) 

Intercept (mean-centred predictors!):  
The overall likelihood of admission is  
exp(-0.843) / (1 + exp(-0.843)) ≈ 0.30 
 

Main effect of GRE (higher GRE means 
increase in admission likelihood) 
 

Main effect of GPA (higher GPA means 
increase in admission likelihood) 
 

UIP main effect (smaller[=“better”] UIP 
scores mean higher admission 
likelihood, except UIP=3 vs. UIP=4) 
 

No significant interaction terms 
  



LRχ2 tests 

• Say, we were interested in the main effect of UIP (4-level ordinal 
predictor): 

 

 
 

 

 

 

# Run a glm() without UIP main effect parameters 

AM.noUIP <- glm(admit ~  

                  GRE.cn + GPA.cn + # UIP.2cn + UIP.3cn + UIP.4cn +   

                  UIP.2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn + 

                  UIP.2cn:GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,  

                data = AM.data, 

                family = binomial(logit)) 

 

# Compare with previous model 

anova(AM.noUIP, AM.model, test="Chi") 



LRχ2 tests 

• Say, we were interested in the main effect of UIP (4-level ordinal 
predictor): 

 

 
 

 

 

 

# Run a glm() without UIP main effect parameters 

AM.noUIP <- glm(admit ~  

                  GRE.cn + GPA.cn + # UIP.2cn + UIP.3cn + UIP.4cn +   

                  UIP.2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn + 

                  UIP.2cn:GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,  

                data = AM.data, 

                family = binomial(logit)) 

 

# Compare with previous model 

anova(AM.noUIP, AM.model, test="Chi") 

Thus: 
The main effect of UIP is significant: 
LRχ2 = 19.507, df = 3, p < .001 



Analysing rank data using 
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Ordinal data 

• Are data from which one can reasonably only make assertions 
about relative rankings of observations along some latent 
dimension (e.g., “trustworthyness”, “attractiveness”, “degree of 
agreement”, “grammaticality”, “plausibility”, etc.) 

• Rating data (e.g., Likert scales) typically fall into this category 

• Analysing such data using standard linear models (t-test, 
ANOVA, linear mixed models) often leads to inaccurate 
inferences (Type I and Type II errors) due to  
– Violation of linear modelling assumptions (normality, homoskedasticity)  

– Ignoring that ratings are bounded between a minimum and a maximum 

– Ascribing more information to the data than the scale actually supports 
• a mean of 2.734 refers to an observation that cannot possibly be made on a 1-2-3-4-5 

scale 

• equal differences on the rating scale do not necessarily mean equal differences in the 
property being measured 



Ordinal data 

• Perhaps the biggest theoretical problem with ratings is that we don’t know their 
relation to the latent dimension of interest (can even vary across subjects and trials) 

• Close to linear = equal distances 
on the scale mean (roughly) equal 
distances in the property being 
measured; differences on the 
scale can be ranked (=> ordered 
metric scale) 

• Non-linear = equal distances on 
the scale do not mean equal 
distances in the property being 
measured; differences on the 
scale can not be ranked 



Ordinal data 

• Perhaps the biggest theoretical problem with ratings is that we don’t know their 
relation to the latent dimension of interest (can even vary across subjects and trials) 

• Close to linear = equal distances 
on the scale mean (roughly) equal 
distances in the property being 
measured; differences on the 
scale can be ranked (=> ordered 
metric scale) 

• Non-linear = equal distances on 
the scale do not mean equal 
distances in the property being 
measured; differences on the 
scale can not be ranked 

 Better use a conservative approach that   
 only takes rank- and distributional   
 information into account 



Ordinal data modelling 

• Fortunately, a variety of different R packages (but see also 
GEE/GLMM in SPSS) have emerged in recent years  that allow 
for appropriate modelling of ordinal data 

• There’s little excuse for using procedures relying on calculation 
of means (t-test, ANOVA, etc.) anymore 

• Non-parametric tests like Mann-Witney U, Wilcoxon signed-
ranks test, etc., are equally bound to become historic side-notes  
– Can’t model complex (factorial) designs 

– Not very accurate 

– Not very flexible/powerful in accounting for repeated-measures 
dependencies 

– Do not allow for simultaneous generalization of findings across subjects 
and items 

 

 



ordinal Package 

• Here, I will primarily focus on cumulative models as 
implemented in the R package ordinal (Christensen, 2018) 
which uses a frequentist approach to inferencing and is 
comparable to glm()(base R) and lme4 (mixed effects 
modelling) 

• Comes with a superb vignette and tutorial 

 



Ordinal logistic regression 

• ordinal package: An Implementation of cumulative link 
(mixed) models also known as ordered regression models, 
proportional odds models, proportional hazards models for 
grouped survival times and ordered logit/probit/... models. 

• Mathematically, part of the generalized linear model family 

• In essence, modelling scale-point occurrences in terms of a 
GLM assuming a multinomial distribution and a cumulative link 
(logit, probit, cauchit, loglog, or cloglog)   

• I will henceforth call it ordinal logistic regression, as I will only 
use the logit link here 

• Two functions 
– clm()  - comparable to glm()in base R (independent measures!) 

– clmm() – comparable to (g)lmer in lme4 (mixed models) 

 



An illustrative (fake) example 

• Let’s assume we asked 100 male and 100 female 
participants to rate the attractiveness of a photo 
of Dr. Dale Barr (right) on a scale from 1-5 

 

not attractive  [1]--------[2]-------[3]-------[4]-------[5] very attractive 

 
• Every subject (N=200) 

provides only one rating, 
and we are interested 
whether males and females 
differ in their judgements 

• Let’s assume the 
distribution of ratings looks 
like this -> 



An illustrative (fake) example 

• Let’s assume we asked 100 male and 100 female 
participants to rate the attractiveness of a photo 
of Dr. Dale Barr (right) on a scale from 1-5 

 

not attractive  [1]--------[2]-------[3]-------[4]-------[5] very attractive 

 
• The cumulative percentages 

would look like this -> 
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An illustrative (fake) example 

• Let’s assume we asked 100 male and 100 female 
participants to rate the attractiveness of a photo 
of Dr. Dale Barr (right) on a scale from 1-5 

 

not attractive  [1]--------[2]-------[3]-------[4]-------[5] very attractive 

 
• And the log odds of the 

cumulative percentages 
(“cumulative logits”) would 
look like this ->   

• That’s what is being 
modelled in ordinal logistic 
regression 



Let’s analyse in R 

# get the data (included in web-folder) 

daleratings <- read.csv("dalerate.csv") 
 

head(daleratings) 

# Code predictor (gender); dummy coding should suffice (simple 1-way design) 

daleratings$female <- ifelse(daleratings$gender=="female",1,0) 
 

# IMPORTANT: turn DV into a factor! 

daleratings$attract <- factor(daleratings$rating)  
 

head(daleratings) 



Let’s analyse in R 

# load ordinal package 

library(ordinal) 

 

# run ordinal logistic model 

ordinal.mod <- clm(attract ~ female, data = daleratings) 

summary(ordinal.mod) 



Things to note 

# load ordinal package 

library(ordinal) 

 

# run ordinal logistic model 

ordinal.mod <- clm(attract ~ female, data = daleratings) 

summary(ordinal.mod) 

• Instead of a single intercept, one obtains K (number of scale 
points) – 1 cumulative logit ‘threshold’ coefficients 

• For males (X = 0), the estimated cumulative probability of 
choosing scale point … 

     1 is exp(-1.8226)/(1+exp(-1.8226)) = 0.139 (~14%), 
     2 (or lower) is exp(-0.5017)/(1+exp(-0.5017)) = 0.377 (~38%), 
     3 (or lower) is exp(0.6292)/(1+exp(0.6292)) = 0.652 (~65%), 
     4 (or lower) is exp(2.3524)/(1+exp(2.3524)) = 0.913 (~91%) 
     5 (or lower) is 1 (100%) 



Things to note 

# load ordinal package 

library(ordinal) 

 

# run ordinal logistic model 

ordinal.mod <- clm(attract ~ female, data = daleratings) 

summary(ordinal.mod) 
• The effect of being female (X=1) on the attractiveness ratings 

is positive, but only marginally so (p < .07) 
• Specifically, compared to males, females are 

exp(0.4731)/(1+exp(0.4731)) = 61.6% more likely to choose a 
higher attractiveness rating 



Different threshold assumptions 

• Via the threshold argument, it is possible to change 
assumptions about ‘spacing’ of scale categories: 
– threshold=“flexible” (default): each scale category (minus the 

highest one) gets its own cumulative logit threshold 

– threshold=“equidistant”:  scale points are assumed to be 
evenly spaced 

– threshold=“symmetric”:  scale points are assumed to be evenly 
spaced below/above scale centre (apparently a good choice in 
‘polarised’ scales like 1 = very unattractive – 7 = very attractive) 

• Apart from requiring fewer parameters, the symmetric and 
equidistant options make stronger assumptions about the scale 
– Requires theoretical justification and/or AIC model comparison (see 

example at the end of next session) 

– As always, do not “shop around” for settings that give you the best p-
values! 

 

 



E.g., equidistant thresholds 

# run ordinal logistic model with equidistant thresholds 

ordinal.mod2 <- clm(attract ~ female,  

                   data = daleratings,  

                   threshold = "equidistant") 

summary(ordinal.mod2) 



E.g., equidistant thresholds 

# run ordinal logistic model with equidistant thresholds 

ordinal.mod2 <- clm(attract ~ female,  

                   data = daleratings,  

                   threshold = "equidistant") 

summary(ordinal.mod2) 

• Now there is only one ‘intercept’ threshold (threshold.1), plus a 
spacing parameter that needs to be successively added. 

• Thus, for males (X=0), the estimated cumulative probability of 
choosing scale point … 

     1 is exp(-1.9128)/(1+exp(-1.9128)) = 0.129 (~13%), 
     2 (or lower) is  
          exp((-1.9128+1.3477))/(1+exp((-1.9128+1.3477))) = 0.362 (~36%), 
     3 (or lower) is  
          exp((-0.5651+1.3477))/(1+exp((-0.5651+1.3477))) = 0.686 (~69%), 
     4 (or lower) is 
          exp((0.7826+1.3477))/(1+exp((0.7826+1.3477))) = 0.894 (~89%) 
     5 (or lower) is 1 (100%) 



Summary 

• Generalized Linear Models (glm(); see also clm()in ordinal 
package) are an extension/generalization of standard linear models 
(lm()) 
– lm()is in fact a special case of glm() 

• Same principles in terms of predictor coding & model formulae  

• family argument in glm()allows for the specification of 
distribution and link functions appropriate for modelling non-
normally distributed DVs and/or non-linear relationships in the data 

• Examples: Gamma regression, binary and ordinal logistic regression 

• Important: lm(), glm(), and clm()assume independent-
measures data (one observation per variable per sampling unit) 

• To model repeated-measures data (multiple observations per 
variable per sampling unit), we need to extend things even further 
– Generalized Estimating Equations (GEE) 

– Generalized Linear Mixed Models (GLMMs) 
 

 


