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* Goal: Predict a continuous DV (y) from a continuous IV (x),
assuming a linear relationship between the two

Vi = ﬁO + ﬁlxi ’
Yi=Yite
where
y;= predicted value of y; 0 ! ) ; .

x; = value of the predictor variable
fo = the intercept (or regression constant): the value of y; when x =0
[31 = the slope (or regression coefficient): the difference
in y; associated with a one-unit increase in X
e; = prediction error (residuals)



The ‘best fitting” line through an x - y
data cloud is one that minimizes the
residuals (prediction errors); formally:

min(X(y — %)

This can be achieved by setting

b1
Bo

Where 1 is indeed the good old Pearson
correlation coefficient!
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Original data



e The ‘best fitting’ line throughan x - y
data cloud is one that minimizes the
residuals (prediction errors); formally:

min(X(y — %)

e This can be achieved by setting

b1

o=y —p1°X 0 ) 2 3 4

X

COVyy

2
SY

= 1" (5y/Sy),

Original data plus regression line
such that Y.(y — $)? is minimized

Once we’ve determined the values for 8 (intercept) and 81 (slope), we can
more or less reliably predict what the most likely y would be at a given X,
e.g.forx=5 y=Bo+ P15




 Example data: Lexical decision experiment (real data)
144 words (and plenty of non-words as “fillers’, which are not included)
Each word presented either in UPPER or 1owercase font (variable spelling)

Task: decide as quickly and accurately as possible (button press) whether a
given stimulus is an actual word

Also recorded for each word: lexical frequency (log10 per million word counts)
33 subjects, but data are aggregated up to item level (not trial-by-trial data!)

* Questions:

Is there a linear relationship between lexical frequency and RT?

— How can we predict RT from lexical frequency?



# Simple regression example data

RT.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv")
head (RT.data)

Item spelling logfreq RT - 5
Tower 0.61 561.95 S
Tower 2.19 571.83 o °

Tower 0.85 610,22
Tower 1.57 722.70
Tower 0.22 758.30 o
Tower 1.28 619,60
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# Plot y against x e O@wfgo o @ -
x <- RT.dataSlogfreq E__OO . oo 8ee.T O§OO°% S0, o
y <- RT.data$RT ool EP P N T SCLE
plot (x, v, |:> c e > OO@ SR
xlab = "log lex. frequency", s 1 | | OT @lm °
ylab = "RT (ms)") 1 0 1 2 3 4

log lex. frequency

heta 0O beta_ 1
JF02.3219 -25.5181

# Calculate intercept (beta 0) and
# slope (beta 1) "on foot"
slope <- cor(x, y) * (sd(y) / sd(x))

intercept <- mean(y) - slope * mean (x)

* Thus, we can predict that with every 1-unit
# Look at what we’ve done increase in x (logfreq) there is a 25.5 ms
c("beta 0" = intercept, "beta 1" = slope) decreasein y (RT) :

RT =702 ms — 25.5ms -logfreq



# Using function Im()
LFl <- Im(y ~ x)
summary (LF1)

call:
Im(formula = v ~ x)

Residuals:
Min 10 Median Els] Max
-124.81 -54.57 -9.01 43,57 339.43

Coefficients:

Estimate std. Error © value pr{=|t|)
(Intercept) 702.322 10.584 66,359 = Ze-1lg #¥¥
X -25.518 5.009 -5.095 1.09e-06 #**%*

signif. codes: 0 “#®®¥' 0,001 ‘*%’ Q.01 ‘%’ 0.0% *.” 0.1 ° ' 1

Residual standard error: 77.98 on 142 degrees of freedom
Multiple R-squared: 0.1545, Adjusted R-squared: 0.1486
F-statistic: 25.96 on 1 and 142 DF, p-value: 1.094e-06

* Things to look out for:

# Alternatively

LF2 <- 1m(RT ~ logfreq, data=RT.data)

summary (LF2)

call:
Im{formula = RT ~ logfreq, data = RT.data)

Residuals:
Min 10 m™Median 30 Max
-124.81 -54.57 -9.01 43,57 339.43

Coefficients:
Estimate std. Error t wvalue Pri=|t]|)
(Intercept) 702.322

10.584 66.359 = Ze-1g #*¥

Togfreq -25.518 5.009 -5.095 1.09e-0g§ ***

signif. codes: 0 *##%' 0,001 “#*%" 0.01 °“%*° 0.05 *." 0.1 * " 1

rResidual standard error: 77.98 on 142 degrees of freedom

Multiple R-squared: 0.1545, Adjusted R-squared:

0.1486

F-statistic: 25.96 on 1 and 142 DF, p-value: 1.094e-06

— Coefficients (intercept and slope); one-sample t tests against zero
* Use coefficients for prediction (model equation)

— R-squared: goodness of fit

* how much variance in the DV is explained by the model (here, containing only one

continuous IV)



coefficients (LF2) # model coefficients (=> vector)

confint (LF2, level=0.95) # (95%) CIs for model parameters (=> matrix)
fitted (LF2); predict(LF2) # predicted values (=> vector)

residuals (LF2) # residuals (=> vector), observed - predicted values of DV
anova (LF2) # anova table (=> data frame)

vcov (LF2) # covariance matrix for model parameters (=> matrix)

influence (LF2) # regression diagnostics (=> vector)

# Example 1: 99% CIs on coefficients # Example 2: Coefficients
> confint (LF2, level=0.99) > coefficients (LF2)
8.5 % 99.5 % (Intercept) logfreq
(Intercept) 674.68895 729.95488 782.3219 -25.5181
logfreq -38.59557 -12.44862
# Example 3: Predicted y for a hypothetical x, given a

# linear fit

\ Pred.y <- function (hypo.x, fit)
unname (coefficients (fit) [1] +
By - coefficients (fit) [2] * hypo.x)
> Pred.y(1.234, LF2)
[1] 67@.8326
> Pred.y (1, LF2) - Pred.y (0, LF2)

[1] -25.5181

Picture (makes this slide look nicer..)



RT as function of log frequency

1000

Scatterplot with regression line,
using previous linear fit LF2
Plot y against x o
<- RT.dataSlogfreq
<- RT.dataS$RT
plot (x, v,

xlab "log lex. frequency",

ylab = "RT (ms)")
abline (LF2, col="red", 1lwd=2)
title ("RT as function of log frequency")
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RT as function of log frequency

1000

800

Scatterplot with regression line,
using previous linear fit LF2
Plot y against x

<- RT.dataSlogfreqg

<- RT.data$RT

800

RT(ms)
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700

"log lex.
ylab = "RT (ms)")
col="red",

frequency",

600

abline (LF2,

500

title ("RT as function of log frequency")

# Generate new sequence of x-values
new.x <- seq(-1,4.5, by=0.05)

# Determine CI for each of the new x-values using predict ()
we are using 99% CIs

newdata=data.frame (logfreg=new.x),
level=0.99)

# NB: Here,
prd <- predict (LF2,
interval="confidence",

# Add the lower and upper CI limits as lines to the plot
lines (new.x,
lines (new.x,

col="blue",
col="blue",

prdfl, 2],
prd([, 3],

log lex. frequency

> head (prd)

fit
1 727.8488
2 726.5641
3 725.2882
4 724.8123
o 722.7364
B 721.4685

Iwr upr
689.8451 766.6358
688.3561 7e4.7721
687.6649 762.9115
686.9715 761.8531
B86.2756 759.1972
B85.5771 757.3439



e Variables are measured on at least interval scale (continuous data)
— Can theoretically range from —co to +c0
— Exception: Categorical predictor variables (dummy-coding etc.)

* Linearity / additivity
* Homoscedasticity
— Constant variance of residuals over the entire x-range, e.g.

homoscedastic not homoscedastic
O
o) o (0] o O

O
009 ,0°8 7% o

g 00 Boo © 2.8 8 ° oo °

§ §88 0 8 §88600 o© o ©°
B o) & o
o 8 ' | | o 5 '
0 5 10 15 20 0 5 10 15 20

* Normality of residuals
— e;~N(0,0)



# diagnostic plots

# formatted as 2*2 matrix Residuals vs Fitted Scale-Location
layout (matrix(c(1,2,3,4),2,2)) - oae 0% S W4°“WO
=2 i
plot (LF2) ® o ER s
‘w — o
i @
E S I N (R YA
= & N [ [ ]
E — E — o oggoo %o‘@c% go 00 =
(=] E g H ] Q)o@}%poo " o 2 o
=] [1s] 5 oo @ avtd e
= = LI °
] = o oo
[ [ I I I [ I = I [ I I I I [
600 620 640 660 680 700 720 600 620 640 660 B8O TFOO 720
Fitted values Fitted values
Mormal Q-Q Residuals vs Leverage
W w0 o5
gc . «gg
o= — B4 L e I oB4
ig o — er ig 7 | e
w w
@ @
- [ - “T
14} 14}
M N JE—
T = =
3 = 4
& © 7 &
n _ o v
; o
| | | | I | | | I
-2 -1 0 1 2 0.00 0.01 0.02 0.03

Theoretical Quantiles Leverage



Simple (bivariate) linear regression is a useful tool for prediction and
‘hypothetical forecasting’

— E.g., what would be the most likely y for a very large X which | haven’t
actually observed?

Quality of prediction (= confidence in predicted values) depends on
how much variance is explained by the regression line

— High R?means good fit of the model to the data (reliable prediction)

Other frequent use: de-trending of data (by subtracting ys from the ys),
e.g. to eliminate the influence of a “control variable”

original . de-trended

Unstandardized Residual

logfreq logfreq



* That’s actually no problem for regression

* Indeed, we shall see that (say) an independent measures t-test is just
“regression in disguise”...

# Simple regression example data

RT.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv")

e Let’s dichotomize our logfreq variable by performing a median-split into

low-frequency vs. high-frequency words

# Median-split logfreq into two categories

RT.dataSfreqCAT <- ifelse(RT.dataSlogfreq > median (RT.dataSlogfreq),

head (RT.data)

Item spelling

1 1 lower
2 2 lower
3 3 lower
4 4 lower
5 5 lower
6 6 lower

logfreq

H o O RO

.61
.19
.85
.57
.22
.28

561.
571.
610.
722.
758,
619.

"high" ,
RT freqCAT
95 Tow
83 high
22 Tow
70 Tow
30 Tow
60 Tow

> table(RT.data$freqCAT)

high Tlow
72 72
> |



e Unfortunately, regression doesn’t actually work with character variables
(“low” vs. “high”) as predictors

* Let’'s use Dummy Coding instead (“low” is coded as 0 and “high” as 1):

# "Dummy coding" of freqCAT

RT.dataSfreqCAT dummy <- ifelse(RT.dataSfreqCAT == "low",0,1)

* And then perform a linear regression of RT as a function of freqCAT _dummy

# Perform linear regression (RT as a function of freqCAT dummy)

catmod <- 1Im(RT ~ freqCAT dummy, data

summary (catmod)
call:
Im(formula = RT ~ freqCAT_dummy, data = RT.data)
Residuals:

Min 1Q Median 30 Max
-136.73 -51.28 -8.61 34.16 343.11
Coefficients:
Estimate std. Error t value Pr(|tl)

(Intercept) 694. 490 9.106 76.267 < 2e-16 ***
freqCAT_dummy -69.453 12.878 -5.393 2.82e-07 *%%*
Signif. codes: 0 f*¥*' 0,001 “** 0.01 ‘*’ 0.05 “." 0.1 *°

Residual standard error: 77.27 on 142 degrees of freedom

Multiple R-squared: 0.17, Adjusted R-squared:

0.1642

F-statistic: 29.09 on 1 and 142 DF, p-value: 2.82e-07

RT.data)



* Unfortunately, regression doesn’t actually work with character variables
(“low” vs. “high”) as predictors

* Let’'s use Dummy Coding instead (“low” is coded as 0 and “high” as 1):

# "Dummy coding" of freqCAT

RT.dataSfreqCAT dummy <- ifelse(RT.dataSfreqCAT == "low",0,1)

* And then perform a linear regression of RT as a function of freqCAT_dummy

# Perform linear regression (RT as a function of freqCAT dummy)
catmod <- 1Im(RT ~ freqCAT dummy, data = RT.data)

summary (catmod)

call:
Im(formula = RT ~ freqCAT_dummy, data = RT.data)

Residuals:
Min 10 Median 3Q Max
-136.73 -51.28 -8.61 34.16  343.11

The mean RT for “low frequency” words (x
=0) is 694.49 ms

Coefficients:

Estimate S t value Pr(>|tl)
9.106 76.267 < 2e-16 ***

12.878 -5.393 2.82e-07 ¥**¥

694.490
freqCAT_dummy -69.453

(Intercept)

Signif. codes: 0 ‘#**’ 0.001 ‘**’ 0.01 ‘%’ 0.05 ‘.’ 0-1>
Residual standard error: 77.27 on|142 degrees of freedom|

Multiple R-squared: 0.17, Adjusted R-squared: 0.1642

F-statistic: 29.09 on 1 and 142 DF, p-value: 2.82e-07

Overall, “high” frequency words (x = 1) are
responded to 69.453 ms faster (negative
slope) than “low” frequency words (x = 0)
This effect is significant at ¢(142) = -5.393;
p = 0.0000000282




Alternatively, we could perform a t-test, and get the exact same results:

# The same as t-test (note: here we can use character variables)

t.test (RT ~ freqgCAT, var.equal = TRUE, data = RT.data)

Two Sample t-test

data: RT by freqCAT
t = -5.3932, df = 142, p-value = 2.82e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-94.91023 -43.99616

sample estimates:
mean in group high mean in group low
£25.0368 694.4900

The independent t-test (equal variance assumed) really is just
regression in disguise!



* Instead of Dummy Coding (0, 1), we could have used Deviation
Coding (-0.5, 0.5) of our categorical predictorin 1m () :

# "Deviation coding" of freqCAT

RT.dataSfreqCAT dev <- ifelse(RT.dataS$freqCAT == "low",-0.5,0.5)

# Perform linear regression (RT as a function of freqCAT dev)
catmod2 <- Im(RT ~ freqCAT dev, data = RT.data)

summary (catmod?2)

call:

Im{(formula = RT ~ freqCAT_dev, data = RT.data)

Residuals:
Min 1@ Mmedian 3Q Max
-136.73 -51.28 -§.61 34.16 343.11

Coefficients:
Estimate Std.
(Intercept) [659.763

ot € value Pr(=|t])
6.439 102.465 < Z2e-1b **=*

The crucial difference is that the intercept
(predicted RT at x = 0) now indexes the
grand average RT rather the mean RT for
“low” frequency words (cf. dummy coding
results)!

Everything else stays the same

freqCAT_dev -69.453

12.878 -5.393 2.82e-07 #¥¥*

Signif. codes: 0 ‘***’ Q.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ' 1

Residual standard error: 77.27 on 142 degrees of freedom
Multiple R-squared: 0.17, Adjusted R-squared:

F-statistic: 29.09 on 1 and 142 DF, p-value: 2.82e-07

0.1642




Multiple Regression

Now, we will extend the idea of linearly predicting a DV (y) from a single
IV (x) to the case where we linearly predict y from a combination of
several unrelated IVs (x4, X, ..., Xi); multiple linear regression

Various applications / goals / purposes:

— Prediction

— Confirmatory testing of individual predictors
* E.g., amongst a range of theoretically relevant IVs, does a specific IV of
interest make a significant contribution to the prediction of y?
* Which IV is ‘more important’ in predicting y?

— Exploratory ‘model selection’

* Find a model that strikes an optimal compromise between number of
IVs (the fewer the better — Occam’s razor) and quality of prediction
(high R?) - adjusted R? for model comparison

» Stepwise regression heuristics (forward, backward, etc.)



Simple (Bivariate)
Linear Regression . : -

one criterion

one predictor > “slope”(B1)

8
;
8
8
g
B
g
g

“intercept” or “constant”

(Bo)

y=p+tpix > yi=Y+e, e,~N(0,0)

Multiple Linear Regression

one criterion
several predictors

y =Po +Bixy +Bx; + .. +Brxy

>y, =y+e, e~N(0,o0)




Multiple Regression

 The general purpose of multiple regression is to learn
more about the linear relationship between several
independent variables (predictors) and a single dependent
variable (criterion).

* Multiple regression works much the same way as simple
linear regression

* In the multivariate case (when there is more than one
predictor), the regression line cannot be visualized in a
two-dimensional space, but it can be computed just as
easily (a line in a k+1-dimensional space, where k stands
for the number of predictors)



An Example

All imaginary!

A fictitious university is concerned about low class attendance by students.
Based on available data (including student feedback etc.) from 40 courses held
on campus last year, they try to determine which factors contribute to class
attendance in what way.

Class attendance is measured as the average percentage of students attending
a given course in relation to the total number of students enrolled in that
course.

Of particular interest are four predictor variables:

How much the course contributes to the students’ grade (variable PercWeight,
ranging from 5% to 35%)

The quality of the online materials for the course, including lecture notes, podcasts
etc. (variable OnlineMat, average student rating from 1 = “poor quality” to 5 =
“excellent quality”)

At what day of the week the course is held (variable DaysFromMonday: 0=Monday,
1=Tuesday, 2=Wednesday, 3=Thursday, 4=Friday)

How engaging the lecturer is (variable Engaging, average student rating from 1 =
“very boring” to 5 = “very engaging”)



# Multiple regression example data
courses.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/Courses.csv")

> head (RT.data)

L=y B S B R WV (L S

course PercWeight OnlineMat DaysFromMonday Engaging Attend

oW L R

38
25

LM

S of R L R

a.

1.
3.
1.
1.
2.

3

CO ol o

9.7
59.86
7a.9
75.8
65.8
8.1



e Standard multiple regression actually assumes that predictor variables are
independent from one another

e |f predictors are strongly correlated, coefficient estimates become unreliable
and difficult to interpret.

e A ‘quick and dirty’ way of testing this is by checking correlation matrices

# Correlation matrix considering only the predictors (variables 2-5 in original
# data-frame) :
> cor (as.matrix (courses.data[2:5]))

PerchWeight OnlineMat DaysFromMonday  Engaging

Percilleight 1.e88@a88 @.1364941 -8.2331893 @.1213814
OnlineMat e.13e4941 1.ea88808 -8.1898656 -8.1445529
DaysFromMonday -8.2331893 -8.1898656 1.8666008 -8.2522368
Engaging @.1213614 -8.1448529 -8.2522368 1.6660888

e No huge correlations — good!



# Running multiple regression using lm()

courses.fit <- Im(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging,
data = courses.data)

summary (courses.fit)

Call:
Im{formula = Attend ~ Perchleight + OnlineMat + DaysFromMonday +
Engaging, data = courses.data)

Residuals:
Min 10 Median 30 Max
-11.8914 -2.76842 B.1122 2.4773  18.8651

Coefficients:
Estimate Std. Error t wvalue Pr(>|t])
(Intercept) g4d.,47548 4,17758 15.434 < 2e-lg F¥*

Perclleight @.54175% B.e7@28 7.783 4.77e-pg FEEF
OnlineMat -2.12829 B.78226 -3.819 B8.88471 **
DaysFromonday -1.37881 @.58648 -2.351 8@.82443 *

Engaging @.99553 a.7alas 1.428 @&.ladde
Signif. codes: 8 “FF¥' g.gal “**' .1 “** @.85 . 6.1 ' 1
Residual standard error: 4.863 on 35 degrees of freedom

Multiple R-squared: 8.7164, Adjusted R-squared: @.68839
° Thus: F-statistic: 22.1 on 4 and 35 DF, p-value: 3.538e-89

o Attend =64.5 + 0.54*PercWeight — 2.12*OnlineMat — 1.38*DaysFromMonday + 0.99*Engaging (+e)
o Model explains (fake) data very well : R-squared = 0.72
o The slope coefficient for Engaging is not significantly different from zero



e (Qualitatively, we can see that students attend more when
— Courses contribute more to the final mark

— Courses have poorer quality online materials
— Courses take place closer to Monday than to Friday
— Courses are given by more engaging lecturers (?)

 What about “relative importance” of predictors?

— Perhaps easier to see when predictors and criterion are standardized (on
the same scale; mean=0; SD = 1)

— “Beta-coefficients”



Standardized Coefficients (“betas”)

# Scale the data (by default,
# scale=TRUE
courses.dataz <-

center=TRUE
[divide by SD]) and run 1lm()
data.frame (scale (courses.data))

again

[subtract mean],

and

courses.fit?2 <- Im(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging,

data =
summary (courses.fit2)

Call:
Im{formula =
Engaging, data =

Attend ~ PercWeight + OnlineMat
courses.data2)

Residuals:

Min 10  Median 30 Max
-1.28234 -8.31265 @.81298 @.28641 1.16368
Coefficients:

Estimate Std. Error t value
(Intercept) -5.912e-16 B.B58%e=-82 0.0808
Percheight 7.198e-81 9.337e-82 7.788
OnlineMat -2.845e-81 9.424e-82 -3.819
DaysFromMonday -2.28%e-81 9.735e-82 -2.351
Engaging 1.354e-81 9.538e-82 l.428
Signif. codes: @ "***' @.@e1 "**' @8.01

courses.data?)

+ DaysFromMonday +

Pr(>|t])
1.eaea8

4,77e-@9 **=*
@.88471 **
@.82448 *
@.1l6446

L E.EE |'I.l' E.l r ¥ 1

Residual standard error: 8.5622 on 35 degrees of freedom

Multiple R-squared: ©.7164,

F-statistic: 22.1 on 4 and 35 DF, p-value:

Adjusted R-squared:

8.6839
3.588e-89

Note changes in parameter
estimates & residuals;
everything else (R-squared, t-
tests, etc.) stays the same as
before

Use

coefficients (courses.fit?2)
to extract only the parameters
of interest

Warning: Do not use these
values for prediction (unless
you want to predict everything
on SD-unit scales)



Standardized Coefficients (“betas”)

Interpretation:
e Attendance increases by 1 SD unit with
a 0.72 SD increase in PercWeight +
a 0.28 SD decrease in OnlineMat +
a 0.23 SD decrease in DaysFromMonday +
a 0.14 SD decrease in Engaging

e PercWeight is clearly the most important predictor (well, that’s
sort of evident from the t-statistics already...)

* Caution: Whether “betas” can be directly interpreted in terms of
importance is debatable (better consider Cls for the betas).



All fine (more or less)
Fake data!

Residuals

Standardized residuals
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 E.g., do we really need to include Engaging to fit the current
data accurately?

# Fit Model with and without “Engaging” and compare the models using anova ()
full.fit <- Im(Attend ~ PercWeight + OnlineMat + DaysFromMonday + Engaging,
data = courses.data)
noteng.fit <- lm(Attend ~ PercWeight + OnlineMat + DaysFromMonday,
data = courses.data)
anova (noteng.fit, full.fit)

Model 1: Attend ~ Perclleight + OnlineMat + DaysFromMonday
Model 2: Attend ~ Perchleight + OnlineMat + DaysFromMonday + Engaging

Res.Df RS5S Df Sum of 5q F Pr(>F)
1 36 875.23
2 35 827.55 1 47.675 2.8163 8.1645

* The full model does not seem to significantly improve on the
model without Engaging



> summary (full.fit)

Call:
Im{formula = Attend ~ PercWeight + OnlineMat + DaysFromMonday +
Engaging, data = courses.data)

Residuals:
Min 10  Median 30 Max
-11.8914 -2.7842 @.1122 2.4773 18.8651

Coefficients:

Estimate 5td. Error t walue Pr(»|t])
{Intercept) B4.,47546 4.17758 15.434 < 2e-l6
Percleight @.54175 a.avazs 7.788 4,.77e-09 ***F

*

B

OnlineMat -2.12829 8.78226 -3.919 0.88471 **
DaysFromMonday -1.37881 8.58646 -2.351 @.82443 *
Engaging @.99553 a.7ales 1.426 @.lcd44e

Signif. codes: @ "F%%¥' @g.oa@l “** @81 “* a.e5 .7 Bl 71
Residual standard error: £4.863 on 35 degrees of freedom

Multiple R-squared: ®.7164, Adjusted R-squared: @.6839
F-statistic: 22.1 on 4 and 35 DF, p-value: 3.588e-89

e Things to note:

> summary (noteng.fit)

Call:

Im(formula = Attend ~ PercWeight + OnlineMat + DaysFromMonday,

data = courses.data)
Residuals:

Min 10 Median
-12.7338 -3.3717 -8.8541

Coefficients:

3Q
2.3464

Max
9.,4984

Estimate Std. Error t wvalue

(Intercept) 68.54618
Percleight @.55856
OnlineMat -2.33p44

DaysFromMonday -1.68841

Signif. codes: 8 “F¥* @.@al **' 4,81 *T 885 .7 @1 "' 1

3.88139
@.avaea9
@.69611
@.57324

22.245

7.758
-3.348
-2.792

Pr(>|t])
< 2e-16
3.442-989
8.00192
8.00834

*
*kk
EES
EE

Residual standard error: 4.931 on 36 degrees of freedom
Adjusted R-squared:
F-statistic: 28 on 3 and 36 DF,

Multiple R-squared: 8.7,

@.675

p-value: 1.5992-89

— Coefficient estimates are not the same (“context dependency” of estimates)

— If we use Adjusted R-squared as criterion (full: 0.684, noteng: 0.675), we’d probably better keep

Enagagement in the model!

— Adjusted R-squared = R-squared plus penalty for increasing number of model parameters:
* See e.g. http://www.graphpad.com/guides/prism/6/curve-fitting/index.htm?reg_interpreting_the_adjusted_r2.htm



Model Comparison: Discussion

e Sophisticated algorithms available to select the “best” model
from a candidate set of predictors (“stepwise” regression)

e However, results are strongly dependent on the inclusion criteria
used, direction of testing (forward/backward), ordering of effects
etc.

e Hypothesis driven vs. data driven — which approach?
e Depends on your actual research goals

— Confirmatory (aim: generalisation) If you wish to test hypotheses about a
specific set of theoretically relevant predictors, test all predictors
simultaneously (regardless of whether they ‘improve the fit’ or not)

— Exploratory (aim: hypothesis-generation) If you have a lot of potentially
relevant predictor variables for your current data, use a heuristic model
selection approach to obtain a ‘parsimonious’ model of your data (aim:
hypothesis-generation)

e Be clear about it!

— Don’t try to ‘sell’ an exploratory analysis as confirmatory or vice versa



More Complex Models

The previous models only contained continuous/categorical
predictors as main effect terms

In fact, this is the typical use of multiple regression

However, using the function 1m () in R, you can actually specify

and test more complex types of regression models (including
interactions, polynomial relationships etc.)

— All you need to do is to adjust the model formulain 1m (), using
appropriate syntax

It is also possible to include categorical predictors

— This requires numerical coding of the categorical predictor levels in
a meaningful way



svmbol|| example

meaning

+ +x mclude this variable
- -X delete this variable
Xz mclude the mteraction between these variables
* x ¥z include these vanables and the interactions between them
! x/z nesting: include z nested within x
| x|z

conditioning: imclude x given z

o (u+v+w)"3

include these variables and all interactions up to three way

poly poly(x.3)

polynomial regression: orthogonal polynomaials

Error Error(a’b) specify the error term
I I(x*z) as 1s. mclude a new vanable consisting of these varables multiplied
1 -1

intercept: delete the intercept (regress through the origin)

Shamelessly stolen from http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html



http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html

@ Assume that A has two levels, A; and A,
@ Three coding schemes:

Format A A

s Interp By Interp 4
Dummy a k.a. treatment 0 1 Yau Yar — Ya1
Effect aka sum 1 1 Y 5(Ya2 — Ya1)
Deviation -5 5 '1_/ ?Ag — ?Al

@ Note: R uses Dummy as internal coding for factor” variables. This is not
always desirable, esp. in models containing interaction terms.

@ Deviation coding is just ‘centered’ dummy coding

See also, e.g.:

https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
http://talklab.psy.gla.ac.uk/tvw/catpred/



https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
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Back to our initial example...

Example data: Lexical decision experiment (real data)

144 words (and plenty of non-words as ‘fillers’, which are not included)
Each word presented either in UPPER or 1owercase font (variable spelling)

Task: decide as quickly and accurately as possible (button press) whether a
given stimulus is an actual word

Also recorded for each word: lexical frequency (log10 per million word counts)
33 subjects, but data are aggregated up to item level (not trial-by-trial data!)

New Questions:

Does the spelling of the words (UPPER vs. lowercase) also have an influence
on RT?

— Do spelling and lexical frequency interact in producing different RTs?

» Different slopes for lexical frequency dependent on levels of spelling



# Initial example data

RT.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv")
head (RT.data)

Item spelling Togfreq RT
Tower 0.61 561.95
Tower 2.19 571.83
Tower 0.85 610.22
Tower 1.57 722.70
Tower 0.22 758.30
Tower 1.28 ©19.60

oo F o B
hown bl R

# Let’s numerically code the variable ‘spelling’ first

RT.dataSdummy SP <- ifelse(RT.dataSspelling=="lower",0,1) # dummy coding
RT.dataSdeviat SP <- RT.dataSdummy SP - mean (RT.dataSdummy SP) # deviation coding
head (RT.data)

Item spelling logfreq RT dummy_SP deviat_5FP

1 1 Tower 0.61 561.95 0 -0.5
2 2 Tower 2.19 571.83 0 -0.5
3 3 Tower 0.85 610.22 0 -0.5
4 4 Tower 1.57 722.70 aQ -0.5
5 5 Tower 0.22 758,320 4] -0.5
6 6 Tower 1.28 619.60 0 -0.5

— dummy SP takes the values O (for lowercase spelling) and 1 (for uppercase spelling)
— deviat SPiscoded as-0.5 (lowercase) and 0.5 (uppercase), respectively



# “Outsourcing” model formulae:
model.dummy <- "RT ~ dummy SP + logfreq + dummy SP:logfreq"
model.deviat <- "RT ~ deviat SP + logfreq + deviat_ SP:logfreq"
# Fitting both models
fit.dummy <- 1m(model.dummy,
fit.deviat <- 1m(model.deviat,

> summary (fit.dummy)
call:

Im{formula = model.dummy, data = RT.data)
rResiduals:

Min 10 Median iq Max
-128.95 -52.40 -11.84 42.75 325.97
Coefficients:

Estimate std. Error t wvalue Pri=|t]|)

(Intercept) 681. 562 14 867 45,845 <le-1a #%¥%
dummy_sP 41.520 21.024 1.875 0.0503 .
logfreq -18. 361 7.036 -2.610 0.0100 *
dummy_5pP:logfreq -14.315 9.950 -1.439  0.1525
signif. codes: O ‘##%' Q_001 f#*' Q.01 “*' 0.05 “." 0.1 ¢ '

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.186
F-statistic: 10.08 on 3 and 140 DF, p-value: 4,6652-06

data=RT.data)
data=RT.data)

> summary (fit.deviat)

call:

Im{formula = model.deviat, data = RT.data)
Residuals:

Min 19 mMedian 3q Max
-128.95 -52.40 -11.84 42.75 325.97

Coefficients:

Estimate std. Error t wvalue Pr=|t|)

{(Intercept) 702.322 10.512 ©66.810 <« 2e-1g #%¥
deviat_spP 41. 520 21.024 1.975 0.0503 .
Togfreq -25.518 4,975 -5.129 9,51le-0Q7 #=w#=®
deviat_sp:logfreq -14.315 9.950 -1.439  0.1525

Signif. codes: O °**%%° (Q.001 ‘#*%° 0.01 *#*" 0.05 *." 0.1 * * 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06

* Effect of spelling (at logfreq = 0) is significant(ish): 42 ms higher RTs with UPPER than lowercase spelling
* Interaction is not significant (although estimate indicates that logfreq slope is 14 ms more negative with UPPER

than lowercase spelling)

* Importantly, notice differences in estimates for intercept and logfreq main effect!



Let’s run 1m () to address our new
guestions

# “Outsourcing” model formulae:

model.dummy <- "RT ~ dummy SP + logfreq + dummy SP:logfreq"

model .deviat <- "RT ~ deviat_SP +

logfreq + deviat SP:logfreq"

# Fitting both models
fit.dummy <- Im(model.dummy, data
fit.deviat <- 1lm(model.deviat, da

> summary (fit.dummy)

call:
Im{formula = model.dummy, data = RT.data)

Residuals:
Min 10 Median 30
-128.95 -52.40 -11.84 42.75

Coefficients:
t value Pr(=|t

When the categorical predictor is dummy-coded (0,1):

* The intercept indexes the mean RT for dummy_SP =
O (lowercase spelling) and logfreq =0

* The logfreq “main effect” is actually not a main
effect —it’s the logfreq slope at dummy SP =0
(conceptually: the “simple effect” of logfreq, given
lowercase spelling)

* You would obtain the same estimate (but not SE) for

(Intercept) 6B1. 562 BE7 45,845 <2e-

dummy_spP 21.024 1.975 0.05 1 ici 1

Togfreq -18, 361 7.036 -2.610 0.01 thls COeffICIent If you ran

dummy_spP:logfreq ==TT=TS 9.950 -1.439 0.1y Im(RT~logfreq, data=subset (RT.data, dummy SP==0)
Signif. codes: O ‘##%' 0,001 “**° 0.01 **' 0.05 °." 0.1 ° ' signif. codes: 0 “*#*=' 0 001 ‘#*+%’ 0.01 *** 0.05 .’ 0.1 * " 1
rResidual standard error: 77.46 on 140 degrees of freedom rResidual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16 Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4,6652-06 F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06

* Effect of spelling (at logfreq = 0) is significant(ish): 42 ms higher RTs with UPPER than lowercase spelling
* Interaction is not significant (although estimate indicates that /ogfreq slope is 14 ms more negative with UPPER

than lowercase spelling)

* Importantly, notice differences in estimates for intercept and logfreq main effect!




# “Outsourcinag”

model formulage:

When the categorical predictor is deviation-coded
(-0.5, 0.5):
* The intercept indexes the mean RT at logfreq = 0

* The logfreq effect is a proper main effect (overall
slope associated with logfreq)

| SP:logfreq"
iat SP:logfreq"

maXy (fit.deviat)

call:

call:

Tm(formula = model.dummy, data = RT.data) Im{formulz moddl. deviat, data = RT.data)
Residuals: . Residuals:

Min 10 Median 30 Max Min Xian iq Max
-128.95 -52.40 -11.84 42.75 325.97 _178. 95 42.75 325.97
Coefficients: . Coefficients:

Estimate std. Error t wvalue Pri=|t]|) std. Error t value Pr(=|t|)

(Intercept) 681. 5862 14.867 45.845  <2e-1g w¥+* (Intercept) 10.512 66.810 < Ze-16 ##*
dummy_sP 41,520 21.024 1.975 0.0503 . deviat_sp = \p———e—es 21.024 1.975 0.0503 .
Togfreqg -18.361 7.036 -2.610 0.0100 * logfreq 4.975 -5.129 0.5le-07 ###
dummy_5pP:logfreq -14.315 9.950 -1.439  0.1525 deviat_sP:logfreq 9.950 -1.439  0.1525
Signif. codes: O ‘##%' 0,001 “**° 0.01 **' 0.05 °." 0.1 ° ' signif. codes: 0 “*#*=' 0 001 ‘#*+%’ 0.01 *** 0.05 .’ 0.1 * " 1
Residpal standacd eccoc: 277 46 oo 140 degrees of freedom __pecidual crapdacd error: 77.46 on 140 degrees of freedom
Multi . d: 0.1777, Adjusted R-squared: 0.16
r-sta| Therefore:

In designs including interactions:
* Use deviation coding to assess main effects
* Use dummy coding to assess simple effects

& on 3 and 140 DF,

p-value: 4.665e-06



* Deviation coding of a categorical predictor is in fact “mean-
centred” dummy coding of that predictor

* In most (if not all) applications, it makes sense to mean-centre
continuous predictors as well!

* If all predictors are mean-centred, then

— The model intercept indexes the grand average of the DV
— “Main effect parameters” truly index main effects
 Dummy-coding is, however, useful to perform follow-up
‘simple effects’ analyses (see further down...)



 Mean-centre all the predictors and run 1m () again:

# "deviation coding" (mean-centred dummy coding) of spelling - as before
RT.dataSdeviat SP <- scale(ifelse(RT.dataS$spelling=="1lower",0,1), scale=FALSE)

# mean-centring of the continuous logfreq variable as well
RT.dataScent LFRQ <- scale(RT.dataSlogfreq, scale = FALSE)

# Perform linear regression again

# Note: A*B in formula is just shorthand for A+B+A:B
centmod <- 1Im(RT ~ deviat SP*cent LFRQ, data = RT.data)
summary (centmod)

Call:

Im{(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data)

Residuals: * Now the intercept is 659.763 ms (= grand
Min 10 Median 3Q Max average RT)!

-128.95 -52.40 -11.84 42.75 325.97 . . .
* The effect of deviat_SP is a true main
Coefficients:

Estimate std. Error t value Prés|t|) effect (estimated given average word
(Intercept) 659.763 6.455 102.213 < 2e-16 *¥* frequency)
deviat_sp 17.647 12.910 1.367  0.174 _ .
cent_LFRQ -25.518 4.975 -5.129 9.5le-07 *** * The effect of cent_LFRQ is a true main
deviat_SP:cent_LFRQ -14.315 9.950 -1.439 0.152

effect (estimated given average spelling)

Signif. codes: 0 "*%*' (Q.001 ‘**' 0.01 **' 0.05 *." 0.1 * ' 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-006



RT

# Plot RT as a function of logfreq
plot (RT.data$RT ~ RT.dataSlogfreq,

xlab = "logfreqg", ylab = "RT",
main = "Non-centred")
abline(v = 0, col="red", 1lwd=3, lty=3)
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# Plot RT as a function of cent LFRQ
plot (RT.dataSRT ~ RT.dataScent LFRQ,

xlab = "logfreq", ylab = "RT",
main = “Centred")
abline(v = 0, col="red", 1lwd=3, lty=3)
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e Given the output from the previous omnibus analysis (with mean-centred
predictors), what would be the predicted mean RT for a word with, say,

— acent_LFRQ value of 2.0 and lowercase spelling ?

Call:
Tm(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data)

Residuals:
Min 10 Median 30 Max
-128.95 -52.40 -11.84 42.75 325.97

Coefficients:
Estimate Std. Error t wvalue Pr(=|t])

(Intercept) 659.763 6.455 102.213 < 2e-1b ***
deviat_sP 17.647 12.910 1.367 0.174
cent_LFRQ -25.518 4,975 -5.129 9.51e-0Q7 #¥*
deviat_SP:cent_LFRQ -14.315 9.950 -1.439 0.152
Signif. codes: 0 “#%%’ (Q 001 ‘*** Q.01 ‘*’ 0.05 “.” 0.1 °* " 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06

Answer:

659.763 (grand average) +

17.647 x (-.5) (lowercase spelling) +
-25.518 x 2.0 (cent LFRQ=2) +
-14.315 x (-.5 x 2.0) (interaction)

= 650.219 ms




* Let’s pretend the interaction (deviat_SP:cent LFRQ) were significant, and we
were interested in the ‘simple effect’ of word frequency at each level of spelling

* The way to find out would be to use dummy coding of the spelling predictor

# “dummy coding" of spelling - “lower"“ = 0

RT.dataSdummy SPLO <- ifelse(RT.dataSspelling=="lower",0,1)

# Perform linear regression again
SPL mod <- Im(RT ~ dummy SPLO*cent LFRQ, data
summary (SPL mod)

call:
Im(formula = RT ~ dummy_SPLO * cent_LFRQ, data = RT.data)

RT.data)

Residuals:
Min 10 Median 3Q Max
-128.95 -52.40 -11.84 42.75 325.97

Coefficients:
Estimate std. Error t value Pr(|t])

With lower case spelling, every one-unit
increase in word frequency leads to
18.361 ms faster RTs

This simple effect is significant

(Intercept) 650.940 9.128 71.309 <2e-16 ¥*%
dummy_SPLO 17.647 12.910 1.367 0.174
| cent_LFRQ -18.361 7.036 -2.610 0.010 * |
dummy_SPLO:cent_LFRQ -14.315 9.950 -1.439 0.152
Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 ‘*' 0.05 ‘.” 0.1 ¢ * 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06




* Let’s pretend the interaction (deviat_SP:cent LFRQ) were significant, and we
were interested in the ‘simple effect’ of word frequency at each level of spelling

* The way to find out would be to use dummy coding of the spelling predictor

# “dummy coding" of spelling - “upper“ = 0

RT.dataSdummy SPUO <- ifelse(RT.dataSspelling=="lower",1,0)

# Perform linear regression again

SPU mod <- Im(RT ~ dummy SPUO*cent LFRQ, data

summary (SPU_mod)

call:
Im(formula = RT ~ dummy_SPUO * cent_LFRQ, data = RT.data)

Residuals:
Min 10 Median 3Q Max
-128.95 -52.40 -11.84 42.75 325.97

Coefficients:
Estimate Std. Error t value Pr(>|tl|)

(Intercept) 668.587 9.128 73.242 <« 2e-16 ¥**
dummy_SPUO -17.647 12.910 -1.367 0.174
|cent_LFRQ -32.675 7.036 -4.644 7.78e-06 **¥|
dummy_SPUO: cent_LFRQ 14.315 9.950 1.439 0.152
Ssignif. codes: 0 “*%*%’ Q.001 ***’ 0.01 *** 0.05 *." 0.1 * " 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06

RT.data)

With upper case spelling, every one-unit
increase in word frequency leads to
32.675 ms faster RTs

This simple effect is also significant (even
stronger than with lowercase spelling, but
not reliably stronger)




Factorial designs: Good practise

* For omnibus analysis, mean-centre your predictor
variables to establish main effects and interactions
(2-way, 3-way etc.)

— use deviation or sum coding for categorical predictors
— mean-centre your continuous predictors as well!

* For follow-up tests, use dummy-coding (0,1) of a
‘conditioning predictor’ to decompose higher-order
effects into simpler ones, e.g.

— 3-way interactions into simple 2-way interactions
— 2-way interactions into simple main effects
— Etc.



We have seen that 1m () can perform pretty much the same job as AN(C)OVA,
including

— Categorical and continuous IVs
— Main effects of, and interactions between IVs

However, the summary output only provides t-tests on parameter estimates, e.g.

# Fitting an Im() on our RT data (mean-centred predictors)
centmod <- Im(RT ~ deviat SP * cent LFRQ, data = RT.data)
summary (centmod)

Call:
Im(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data)

Residuals:

Min 10 Median 3Q Max
-128.95 -52.40 -11.84 42.75 325.97
Coefficients: Quest|0n :

Estimate std. Error t value Pr(z|t]|)

(Intercept) 659.763 6.455 102.213 < 2e-16 ¥*¥* -
deviat_sP 17.647 12.910 1.367 0.174 HOW can We get F values
cent_LFRQ -25.518 4.975 -5.129 9.51e-0Q7 *** °
deviat_SP:cent LFRQ -14.315 9.950 -1.439  0.152 for reportlng?
Signif. codes: 0 f¥**’ (_001 **** 0.01 ‘*" 0.05 ‘." 0.1 * " 1

Residual standard error: 77.46 on 140 degrees of freedom
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06



anova() and Anova ()

# Using the base function anova()
anova (centmod)

Analysis of variance Table

Response: RT

Df sum Sq Mean Sq F value Pr(>F)
deviat_spP 1 11210 11210 1.8685 0.1738
cent_LFRQ 1 157848 157848 26.3097 9.511e-07 ¥¥*
deviat_SP:cent_LFRQ 1 12418 12418 2.0698 0.1525
Residuals 140 839945 6000

Signif. codes: 0 “¥**’ (Q.001 ‘**' 0.01 ‘*’ 0.05 ‘. 0.1 °

I”

* anova () uses “sequentia
variance decomposition

Type-I

*  Cumulative addition of effects (in the
order specified by the model formula):

— deviat_SP is tested on top of a model
containing only intercept term (S,)

— cent_LFRQ is tested on top of
Bo + B1deviat_SP

— deviat_SP:cent_LRFQ is tested on top of
Bo + B1deviat_SP + B,cent_LFRQ

* No strictly simultaneous testing of
effects!

# Using the function Anova()
# (part of ‘car’ package)
library (car)

Anova (centmod, type="III")
Anova Table (Type III tests)

Response: RT
Sum Sq Df F value Pr(=F)

(Intercept) 62681436 1 10447 .5850 < 2.2e-16 **%*
deviat_sSP 11210 1 1.8685 0.1738
cent_LFRQ 157848 1 26.3097 9.511e-07 *%*
deviat_SP:cent_LFRQ 12418 1 2.0698 0.1525
Residuals 839945 140
Signif. codes: 0 f¥¥**¥’ (0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 ° " 1
* Anova ()is more flexible due to type
argument

* Here: Type-Illl variance decomposition

* Simultaneous testing of effects:
— deviat_SP is tested on top of
Bo + fricent_LFRQ + B,deviat_SP: cent_LFRQ
— cent_LFRQ is tested on top of
Bo + B1deviat_SP + [,deviat_SP:cent_LFRQ
— deviat_SP:cent_LFRQ is tested on top of
Bo + Brdeviat_SP + f,cent_LFRQ




# Using the base function anova()
anova (centmod)

Analysis of variance Table

Response: RT
Df sum Sq Mean Sq F value Pr(>F)

deviat_sp 1 11210 11210 1.8685 0.1738
cent_LFRQ 1 157848 157848 26.3097 9.511e-07 ¥*¥%*
deviat_SP:cent_LFRQ 1 12418 12418 2.0698 0.1525
Residuals 140 839945 6000

Signif. codes: 0 “¥***’ (0.001 ‘**' 0.01 ‘*’ 0.05 “.” 0.1 *~

* anova () uses “sequential” Type-I
variance decomposition

# Using the function Anova()
# (part of ‘car’ package)
library (car)

Anova (centmod, type="III")
Anova Table (Type III tests)

Response: RT
Sum Sq Df F value Pr(=F)

(Intercept) 62681436 1 10447 .5850 < 2.2e-16 *¥%%*
deviat_sP 11210 1 1.8685 0.1738
cent_LFRQ 157848 1 26.3097 9.511e-07 *¥%*
deviat_SP:cent_LFRQ 12418 1 2.0698 0.1525
Residuals 839945 140

Signif. codes: 0 f¥¥*’ 0,001 ‘**’ 0.01 ‘*' 0.05 “.” 0.1 *°

Here, the two approaches make no difference (balanced data!)

For unbalanced data, it could make a difference what kind of variance decomposition

you are using

Type-lll variance decomposition is perhaps the most generalizable option (it’s also the

default in stats packages such as SPSS, STATISTICA, SAS, etc.)
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dat <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/threeleveldata.csv")

* Can be handled using a regression approach (e.g., 1m () ) as well, but it’s a
bit more tricky than with 2-level predictors

e Let’s try an example with
— Two categorical predictors: A={al, a2, a3}; B={b1, b2}; a 3x2 design
— Continuous DV (ranging from 344 to 2934)

DV
1396
1523
2282
1741
1999

— 90 cases

# The data:
head (dat)

case A B
1 1 al bl
2 2 al bl
3 3 al bl
4 4 al bl
5 5 al bl
¥ 6 al bl

1962



* General rule for coding: given k levels of a categorical predictor, you'll
need k-1 coding variables for that predictor in the regression model; here:

— 3-1 =2 coding variables for predictor A
— 2-1=1 coding variable for predictor B

# Deviation coding of both predictors:

datSala?2 <- scale(ifelse(datSA=="a2",1,0), center=TRUE, scale=FALSE)
datSala3 <- scale(ifelse(datSA=="a3",1,0), center=TRUE, scale=FALSE)
dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE)

Resulting coding:

A | ala2 ala3 | 2

al | -0.33 -0.33 | -0.66
a2 | 0.66 -0.33 0.33
a3 | -0.33 0.66 0.33

B Bdv
b1l | -0.5
b2 | 0.5




* General rule for coding: given k levels of a categorical predictor, you'll
need k-1 coding variables for that predictor in the regression model; here:

— 3-1 =2 coding variables for predictor A
— 2-1=1 coding variable for predictor B

# Deviation coding of both predictors:

datSala?2 <- scale(ifelse(datSA=="a2",1,0), center=TRUE, scale=FALSE)
datSala3 <- scale(ifelse(datSA=="a3",1,0), center=TRUE, scale=FALSE)
dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE)

Resulting coding:

A | ala2 ala3 | 2 B | Bdv

{al]-0.33_ -033 | -0.66 iReferencecategory b1 |-0.5
a2 | 0.66 -0.33 0.33 b2 | 0.5
a3 | -0.33 0.66 0.33




* General rule for coding: given k levels of a categorical predictor, you'll
need k-1 coding variables for that predictor in the regression model; here:

— 3-1 =2 coding variables for predictor A
— 2-1=1 coding variable for predictor B

# Deviation coding of both predictors:

datSala?2 <- scale(ifelse(datSA=="a2",1,0), center=TRUE, scale=FALSE)
datSala3 <- scale(ifelse(datSA=="a3",1,0), center=TRUE, scale=FALSE)
dat$Bdv <- scale(ifelse(dat$B=="b2",1,0), center=TRUE, scale=FALSE)

Resulting coding:

A 5_51_53; E_Jf5§} by B | Bdv
(a1 [i033 EL__E_EJ_TEE_JE':_:@E__E Reference category b1 | -0.5
a2 Eo.ssi :Lo.33§ 0.33 b2 | 05
a3 i_—o.33§ i_o.essi 0.33




# Determine the linear fit (including all main effects and interactions):
fit <= Im(DV ~ ala?2 + ala3 + Bdv + ala2:Bdv + ala3:Bdv, data=dat)
summary (fit)

Call:

Tm{formula = DV ~ ala2 + ala? + Bdv + ala?:Bdv +

Residuals:

Min 10 Median

3Q

-B10.73 -279.12 -11.67 258.83

Coefficients:

Estimate std.

{(Intercept) 17B5.97

alaz -763.07
ala3 Q4,27
Bdwv 314.47
ala2:Bdv 502.80
ala3:Bdv 555.60

signif. codes: (0 f##®%?’

0.001

Error
40. 30
9B8.71
9B8.71
80. 60
197.43
197.43

By 9

Max

1022.47

T value

44.
-7
0.

3.
2.
2.

317
730
955
902
347
814

0.01

Pri=|t|)
< Z2e-16
Z2.1e-11

0.342346

0.000192

0.012697

0. 006090

o !

0.05

ala3:Bdv, data = dat)

Interpretations:

& mean(DV)

&<a2-al

&<a3-al

&< b2-b1

& (a2|b2—al|b2)-(a2]|bl—-al|bl)
& (a3|b2-al|b2)-(a3|bl—-al|bl)

0.1 ° "1

Residual standard error: 382.3 on 84 degrees of freedom

Multiple R-squared:

F-statistic: 23.12 on 5 and 84 DF,

0.5792, Adjusted R-squared:

0.5541

p-value: 1.578e-14



# Determine the linear fit (including all main effects and interactions):

fit <= Im(DV ~ ala?2 + ala3 + Bdv + ala2:Bdv + ala3:Bdv,

summary (fit)

call:

Tm{formula = DV ~ ala2 + ala3 + Bdv + alaZ:Bdv +

Residuals:
Min 19 Median
-810.73 -279.12 -11.67

Coefficients:

Estimate std.

(Intercept) 1785.97

alaz -763.07
ala3 a4, 27
Bdwv 314,47
alaz:Bdv 502. 80
ala3:edv 555. 60

signif. codes: © f#&%%°

3Q

Max

258,83 1022.47

Error t value

40,30 44,
98.71 -7.
98.71 a.
80.60 3
197.43 2.
197.43 2

317
730
955

. 902

347

. B14

0.001 **==' 0.01

Pri=|tl)
< Z2e-16
2.1e-11

0.342346

0.000192

0.012697

0. 006090

[

0.05

ala3:Bdv, data

-84
-84

R84

w
R

LT0.1

residual standard error: 382.3 on B4 degrees of freedom
Multiple R-squared: 0.5792, adjusted R-squared:
F-statistic: 22.12 on 5 and 84 DF,

Not so nice:

* We now have 2 coefficients for the main effect of A, and 2 coefficients for the AxB

interaction

e t-values instead of F-values

0.5541

p-value: 1.578e-14

1

data=dat)



* How can we get F-values for

— the overall main effect of A (3 levels => 2 degrees of freedom)
— the overall main effect of B (2 levels => 1 degree of freedom)
— the A x B interaction (=> (3-1) x (2-1) = 2 degrees of freedom)

* The trick is to use anova () model comparisons, testing
a model that excludes the parameters for a given effect

of interest against the full model (previously stored as
llfit”)



Categorical predictors with more than two levels

# Determine the linear fit including all effects except those related to main
# effect of A

fit no A <- Im(DV ~ Bdv + alaZ:Bdv + ala3:Bdv, data=dat)

# and compare with previous fit (including all effects)

anova (fit no A, fit)

Aanalysis of variance Table

Model 1: DV ~ Bdv + ala2:Bdv + ala3:Bdv Main effect of A is significant at:
Mode]l 2: DV ~ ala2 + alal + Bdv + alaz:edv + ala3:Bdv
Res.Df Rss Df sum of sq F Pr(=F) F(Z, 84) =45.365; p <.001
1 86 25539876
2 84 12278103 2 13261774 45,365 4. 368e-14 #=*

# Do the same with main effect of B
fit no B <- Im(DV ~ ala2 + ala3 + ala2:Bdv + ala3:Bdv, data=dat)
anova (fit no B, fit)

Analysis of variance Table

Model 1: DV ~ ala? + ala3 + alazZ:Bdv + ala3:Bdv . . . . re .
Model 2: DV ~ ala? + ala3 + Bdv + alaz2:Bdv + ala3:Bdv Maln effECt Of B IS Slgnlflcant at:

) Res.[E:rE 14503??? of sum of sq F  Pr(=F) F(l, 84) — 15222’ p < 001

2 84 12278103 1 2225009 15.222 0,000192 #**

# And finally, the interaction:
fit no AB <- Im(DV ~ alaZ + ala3 + Bdv, data=dat)
anova (fit no AB, fit)

analysis of variance Table

Model 1: DV ~ ala2 + ala3 + Bdv The AxB interaction is significant at:
Model 2: DV ~ ala2 + ala3 + Bdv + ala2:Bdv + ala3:Bdv

Res.Df rRss Df sum of sq F Pr>F) F(Z, 84) =4.826; p = .01
1 86 13688820

2 84 12278103 2 1410718 4. 8257 0.01038 =



UNIANCVA DV BY A B
/METHOD=SSTYPE (3)
/ INTERCEPT=INCLUDE
/EMMEANS=TABLES (A) COMPARE ADJ(LSD)
/EMMEANS=TABLES (B) COMPARE ADJ(LSD)
/EMMEANS=TABLES (A*E)
/CRITERIA=ALPHA(.05)

1. A
Estimates
Dependent Variakle: DV
95% Confidence Interval

A Mean Std. Error | Lower Bound | Upper Bound
al 2008.900 £9.802 1870.082 2147.708
E 1245833 £9.802 1107.025 1384641
a3 2103167 £9.802 1964.359 2241975

Pairwise Comparisons

DependentVariable: DV

95% Confidence Interval for
~ Mean Difference®
Difference (I-
(0 A ) A J) Std. Error Sig.” Lower Bound | UpperBound
) al az 763.067 98.714 .000 566.762 959 371
Tests of Between-Subjects Effects a3 -94.267 | 98.714 342 -290.571 102.038
Dependent Variable: DV a2 al -763.067 98.714 .000 -959.371 -566.762
i a3 -857.333 98.714 .000 -1053.638 -661.029
Type lll Sum a3 al 94 267 93.714 342 -102.038 290571
Source of Sguares df Mean Square F Sig. a2 B57.333° | sm.714 000 661.029 1053638
Corrected Model | 16897500.4° § | 3379500.073 23121 .000 Based on estimated marginal means
Int t * The mean difference is significant at the .05 level.
niercep 2870709241 1 287070924.1 1963.981 000 h. Adjustment for multiple comparisons: Least Significant Difference (equivalentto no
A 13261773.87 2 GE308E86.933 45 365 .00a adjustments).
B 2225008.900 1 2225008.900 15222 .0oa
A*B 1410717 600 2 705358.800 4826 010
Errar 12278102.53 a4 146167.887
Total ME246527.0 40
Corrected Total 29175602.90 L]

a. R Squared = 5749 (Adjusted R Squared = 554)




Other categorical predictor coding schemes

 There are numerous other schemes for coding categorical
predictors in regression analysis, see e.g.
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-
systems-for-categorical-variables/

* Different coding schemes may be used to test different linear
hypotheses on the data

* While we cannot go through all of them here, the example of
backward difference coding will be explained in more detail
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Example: Backward difference coding

e Suppose the three levels of the categorical predictor
A in our previous example data set had an ordinal
interpretation: al < a2 < a3

* If so, it would make sense to use a coding scheme
whereby ‘successive’ levels are incrementally
compared with one another, i.e.

— one contrast parameter encodes a2 — al
— the other contrast parameter encodes a3 — a2

* => packward difference coding



# Mean-centred backward difference coding of A:

datSA=="a3",1,0), scale=FALSE)

datSala?2 <- scale(ifelse(datSA=="a2" |
scale=FALSE)

dat$a2a3 <- scale(ifelse(datSA=="a3",1,0),
# deviation coding of B, as before

dat$SBdv <- scale(ifelse(dat$B=="b2",1,0), scale=FALSE)

Resulting coding:

A | ala2 a2a3 | 2 B | Bdv
al | -0.66 -0.33 | -0.99 b1 |-0.5
a2 | 033 -0.33 | 0.00 b2 | 0.5
a3 | 033 066 | 0.99




# Mean-centred backward difference coding of A:

dat$Sala?2 <- scale(ifelse(dat$SA=="a2" | dat$A=="a3",1,0), scale=FALSE)
datSa2a3 <- scale(ifelse(dat$SA=="a3",1,0), scale=FALSE)

# deviation coding of B, as before

dat$SBdv <- scale(ifelse(dat$B=="b2",1,0), scale=FALSE)

Resulting coding:

A |iala2i ja203i] 2 B | Bdv
me==fE===== Fr——d ===
La] 0. 661 0. 33:_ -0.99 lReferencecategory b1 | -0.5
e e e e e o e
! 1l i
a2 1033} -033}| 0.00 b2 | 0.5
i ) I
a3 |10.33! 10.66}| 0.99
(I | I I




# Determine the linear fit (including all main effects and interactions):
fit2 <- Im(DV ~ ala2 + a2a3 + Bdv + ala?2:Bdv + a2a3:Bdv, data=dat)
summary (fit2)

Call:
Tm{formula = DV ~ ala2 + azZa3d + Bdv + ala2:Bdv + azZa3d:Bdv, data = dat)

Residuals:
Min 10 Median 3Q Max
-810.73 -279.12 -11.67 258.83 1022.47

Coefficients:

Estimate std. Error t value pr=|t]) Interpretations:

(Intercept) 1785.97 40.30 44.317 =< 2e-16 *** < mean(DV)

ala? -763.07 98.71 -7.730 2.10e-11 ##=% <a2-al

aza3 857.33 98.71 8.685 2.56e-13 ##% &a3-a2

Edv 314.47 80.60  3.902 0.000192 *##* & b2-bl

ala?:Bdv 502. 80 197.43  2.547 0.012697 ®* & (a2|b2-al|b2)-(a2|bl-al|bl)
aZa3:edv 52. 80 197.43 0.267 0.789787 ¢ (a3]b2-a2|b2) - (a3|bl-a2|bl)
signif. codes: 0 “=¥%’ 0,001 ***° 0.01 ‘*' 0.05 *.” 0.1 ¢ " 1

Residual standard error: 382.3 on B4 degrees of freedom
Multiple R-squared: 0.5792, Adjusted R-squared: 0.5541
F-statistic: 23.12 on 5 and 84 DF, p-value: 1.578e-14
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Previous coding of A:
- aZ2is compared toal
- a3is compared toal

Backward difference coding of A:

- a2is comparedtoal
- a3is compared to a2




Does backward difference coding affect overall

results? =>

# Determine the linear fit including all effects except those related to main

# effect of A

fit no Ax <- 1Im(DV ~ Bdv + alaZ2:Bdv + aZa3:Bdv, data=dat)
# and compare with previous fitZ2 (including all effects)

anova (fit no Ax, fit2)

Analysis of variance Table

Model 1: DV ~ Bdv + alaZ:Bdv + a?a3:Bdv
Model 2: DV ~ ala? + a2a3 + Bdv + ala?:Bdv + a2a3:Bdv

Res.Df RSS Df sum of Sq F Pr(>=F)
1 86 25539876
2 84 12278103 2 13261774 45.365 4.368e-14 #*¥#*

# Do the same with main effect of B

Main effect of A is significant at:
F(2, 84) = 45.365; p <.001

fit no Bx <- 1Im(DV ~ alaZ + a2a3 + ala2:Bdv + aZa3:Bdv, data=dat)

anova (fit no Bx, fit2)

Analysis of variance Table

Model 1: DV ~ ala? + aza3 + ala?:Bdv + aZa3:Bdv
Model 2: DV ~ ala? + aza3 + Bdv + ala2:Bdv + aZa3:Bdv

Res.Df RSS Df Sum of Sq F  Pr(F)
1 85 14503111
2 84 12278103 1 2225009 15.222 0.000192 ¥*¥**

# And finally, the interaction:

fit no ABx <- 1lm(DV ~ ala2 + a2a3 + Bdv,

anova (fit no ABx,
Analysis of Variance Tahle

fit2)

Model 1: DV ~ ala?2 + aZa3 + Bdv
Model 2: DV ~ ala?2 + aZa3 + Bdv + ala?:Bdv + az2a3:Bdv

Res.DfT RSS Df sum of s5q F Pr(sF)
1 86 13688820
2 84 12278103 2 1410718 4.8257 0.01038 *

Main effect of B is significant at:
F(1, 84) = 15.222; p <.001

data=dat)

The AxB interaction is significant at:
F(2, 84) =4.826; p = .01
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Structural priming implies that speakers/listeners unknowingly re-use syntactic structure over subse-
quent utterances. Previous research found that structural priming is reliably enhanced when lexical con-
tent is repeated (lexical boost effect). A widely held assumption is that structure-licensing heads enjoy a
privileged role in lexically boosting structural priming. The present comprehension-to-production prim-
ing experiments investigated whether head-constituents (verbs) versus non-head constituents (argu-
ment nouns) contribute differently to boosting ditransitive structure priming in English. Experiment 1
showed that lexical boosts from repeated agent or recipient nouns (and to a lesser extent, repeated theme
nouns) were comparable to those from repeated verbs. Experiments 2 and 3 found that increasing num-
bers of content words shared between primes and targets led to increasing magnitudes of structural
priming (again, with no ‘special’ contribution of verb-repetition). We conclude that lexical boost effects
are not diagnostic of lexically-specific syntactic representations, even though such representations are
supported by other types of evidence.
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3 Experiments, each
with 5 x 2 design

Binary logistic mixed
effects models

Experiments 2 and 3
employ backward
difference coding for
(ordinal) 5-level
predictor

Data and R-scripts
available here:
http://www.psy.gla.ac
.uk/~christop/LexOver

lap.zip



http://www.psy.gla.ac.uk/~christop/LexOverlap.zip
http://www.psy.gla.ac.uk/~christop/LexOverlap.zip
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The basics of linear regression

How to perform linear regression using 1m () in R
How to specify designs with main effects and interactions
How predictor coding affects parameter interpretation

The importance of mean-centred predictor coding for omnibus
analyses (=> main effects, interactions...)

How to perform follow-up tests (simple effect analyses)
How to derive F-statistics using anova () respectively Anova ()

All you’ve learnt here will be useful when moving on to Generalized
Linear Models and Generalized Linear Mixed Effects Models in the
following sessions



