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Generalized Linear Models, glm ()

* Generalized Linear Models (g1m () ) are an extension of Linear Models
(1m () ) that allow for the specification of distribution and link functions
(via the £family argument) to accommodate a variety of different data
types:

— categorical, count, continuous, etc.
— Ordinal data (e.g., ratings) require a special package in R (more later)

e This ‘generalization’ is useful if you want to model data that are not
continuous or not normally distributed

 When no family argument is specified, g1lm () assumes a normal
distribution with identity link per default, i.e.
family=gaussilian (1dentity)

* Estimation of model parameters (a.k.a. optimization) works differently in
glm () (iterative maximum likelihood estimation), and there are also
notable differences in the output (e.g., goodness of fit, statistics for model
comparison, etc.) compared to 1m ()



1m()versus glm ()

1m () is for ‘standard’ linear
models (no transformation of
parameters and assuming
normality of residuals)

glm () is a generalization of
1m () that can be applied to a
wider range of different data
types (incl. binary), via
appropriate distribution
(variance) and link functions
In fact, 1m(y~x,..)

is conceptually equivalent to

glm(y~x,
family=gaussian (identity),

)

Model families available in glm () :

Family Variance Link

gaussian gaussian identity

binomial binomial logit, probit or cloglog
poisson poisson log, identity or sqrt
Gamma Gamma inverse, identity or log

inverse gaussian inverse.gaussian 1/mu*2

quasi user-defined user-defined

Variance concerns distribution of
residuals

Link applies a transformation to the
model parameters and determines the
interpretation of model coefficients
(the latter will be given in ‘link” units)




# Simple regression example data
RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv")

# "deviation coding" (mean-centred dummy coding) of spelling
RT.dataSdeviat SP <- scale(ifelse(RT.dataS$spelling=="1lower",0,1), scale=FALSE)
# mean-centring of the continuous logfreq variable

RT.dataScent LFRQ <- scale(RT.dataS$logfreqg, scale = FALSE)

j

# Perform linear regression using glm()
glm.mod <- glm(RT ~ deviat SP * cent LFRQ,
data = RT.data,
family=gaussian (identity))
summary (glm.mod)

# Perform linear regression using 1lm()
Im.mod <- Im(RT ~ deviat SP * cent LFRQ,
data = RT.data)

summary (lm.mod)

Call: Ccall:
Im(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data) glm(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data)
Residuals: Deviance Residuals:

Min 1Q Median 30 Max Min 1@ Median 3Q Max
-128.95 -52.40 -11.84 42 .75 325.97 -128.95 -52.40 -11.84 42.75 325.97
Coefficients: Coefficients:

Estimate Std. Error t value Pr(-|tl) Estimate Std. Error t value Pr(>|t])

(Intercept) 659.763 6.455 102.213 < 2e-16 *¥** (Intercept) 659.763 6.455 102.213 < 2e-16 ***
deviat_sP 17.647 12.910 1.367 0.174 deviat_spP 17.647 12.910 1.367 0.174
cent_LFRQ -25.518 4.975 -5.129 9.51e-07 #*** cent_LFRQ -25.518 4.975 -5.129 9.51e-07 ***
deviat_SP:cent_LFRQ -14.315 9.950 -1.439 0.152 deviat_SP:cent_LFRQ -14.315 9.950 -1.439 0.152
Signif. codes: 0 “**%*’ 0.001 “**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1 Signif. codes: 0 ‘*¥*’ 0.001 ‘**’ 0.01 **’ 0.05 .7 0.1 * ’ 1
Residual standard error: 77.46 on 140 degrees of freedom (Dispersion parameter for gaussian family taken to be 5999.61)
Multiple R-squared: 0.1777, Adjusted R-squared: 0.16 )
F-statistic: 10.08 on 3 and 140 DF, p-value: 4.665e-06 Null deviance: 1021421 on 143 degrees of freedom

Residual deviance: 839945 on 140 degrees of freedom
AIC: 1667.3



Previous example: RT as a function of
spelling and word frequency

//# Simple regression example data \\
RT.data <- read.csv("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Regress/RTs.csv")

# "deviation coding" (mean-centred dummy coding) of spelling
RT.dataSdeviat SP <- scale(ifelse(RT.dataS$spelling=="1lower",0,1), scale=FALSE)
# mean-centring of the continuous logfreq variable

RT.dataScent LFRQ <- scale(RT.dataS$logfreqg, scale = FALSE)

\

# Perform linear regression using glm()
glm.mod <- glm(RT ~ deviat SP * cent LFRQ,
data = RT.data,
family=gaussian (identity))
summary (glm.mod)

# Perform linear regression using lm()
Im.mod <- Im(RT ~ deviat SP * cent LFRQ,
data = RT.data)

summary (lm.mod)

Call: .
InCformula = rT ~ deviat_sd ®* NoO real changes between 1m () and glm (), but notice b - rrdata
Residuals: the different goodness of fit statistics, for instance.

M 1Q Medi . .
128.95 -52.40 -11. 84 * R2and adjusted R?in 1m ()
Coefficients: * AIC in glm ( )

Estima P 3 et v e 0 ¥ ) B e e —————rL € Pr'(}ltl)

(Intercept) 659.763 6.455 102.213 <« 2e-16 *** n!-rcept) 659.763 6.455 102.213 < Ze-16 ***
deviat_sp 17.647 12.910 1.367  0.174 At_SP 17.647 12.910 1.367  0.174
cent_LFRQ -25.518 4.975 -5.129 9. §7 e LFRQ -25.518 4.975 -5.129 9.51e-07 *¥*
deviat_SP:cent_LFRQ -14.315 9.950 ikt _SP:cent_LFRQ -14.315 9.950 -1.439 0.152

Signif. codes: 0 f*%%* (Q Q01 %%’ f. codes: 0 ‘¥¥*’ Q0 001 ‘**’ 0.01 **’ 0.05 “.” 0.1 ° "1

Residual . e - - (Disfersion parameter for gaussian family taken to be 5999.61)
Multiplel R- squared 0.1777, Ad]usted R squared 0.16
F-statishre—"—t—or——ara oot

11 devwance 1021421 on 143 degrees of freedom
ATTOe 839945 on 140 degrees of freedom
AIC: 1667 3



As an analogue to adjusted R? in standard linear regression,
glm () reports Akaike Information Criterion (AIC) as a goodness-of-
fit measure (bottom of summary output)

# also accessible via AIC() function
AIC (glm.mod)

[1] 1667.318

See http://en.wikipedia.org/wiki/Akaike information criterion

It takes into account how well the model explains the data, plus a
penalty for model complexity

Note: Lower values of AIC mean better fit
Cannot be interpreted in an absolute sense
But very useful for model comparison! (see further down...)


http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Akaike_information_criterion

# Anova () on glm() object
library (car)
Anova (glm.mod, type="III")

Analysis of Deviance Table (Type III tests)

Response: RT
LR Chisq Df Pr(=Chisq)

deviat_sP 1.8685 1 0.1716

cent_LFRQ 26.3097 1 2.908e-07 ¥k
deviat_SP:cent_LFRQ 2.0098 1 0.1502

Signif. codes: 0 ****' Q001 “**' 0.01 ‘*' 0.05 “." 0.1 * " 1

 For glm () objects (or more generally, model objects based on maximum
likelihood estimation), anova () and Anova () report Analysis of
Deviance Tables

e Likelihood Ratio Chi-Square instead of F
* No error degrees of freedom
(e.g., report LRy’ =1.869,df =1, p=.172 for the main effect of spelling)



e RTs are hardly ever perfectly normally distributed!

* Characteristic positive skew in RT distributions (RTs are theoretically
bounded to range from 0 to +o0)

Histogram of RT
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correct data$RT

* Some authors therefore recommend log-transforming RT data prior to
analysis (coerce them into Normal), or model them using a Gamma
distribution function

(see https://www.statlect.com/probability-distributions/gamma-distribution)



https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution
https://www.statlect.com/probability-distributions/gamma-distribution

glm () for Response Times

Problem with log-transformation of data

— |t sometimes fails (e.g. DV-values £ 0)

— |t affects theoretical interpretation of model coefficients because it
effectively implements a multiplicative model of the original data:
* Note: log(A) + log(B) = log(AxB) and log(A) - log(B) = log(A/B)
* Change in interpretation is not always desirable
With, say, a family=Gamma (identity) approachin glm(), we
maintain the assumption of additive relationships in the RT data
(identity link), but account for a positive skew in the residuals
(Gamma distribution), thereby potentially improving the model fit

With, say, a family=Gamma (1og) approachin glm (), we specify a
multiplicative model of the original RT data (/og link) and account
for a positive skew in the residuals (Gamma distribution)
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Previous example:

RT as a function of

spelling and word frequency

# Perform linear regression using glm()
glm.mod <- glm(RT ~ deviat SP * cent LFRQ,
data = RT.data,
family=gaussian (identity))
summary (glm.mod)

# Perform glm() using Gamma (identity)
glm.mod2 <- glm(RT ~ deviat SP * cent LFRQ,
data = RT.data,
family=Gamma (identity) )
summary (glm.mod?2)

Ccall: call:
glm(formula = RT ~ deviat_SP * cent_LFRQ, data = RT.data) glm(formula = RT ~ deviat_SP * cent_LFRQ, family = Gamma(identity),
data = RT.data)
Deviance Residuals:
Min 10 Median 30 Max Deviance Residuals:
-128.95 -52.40 -11.84 42.75  325.97 Min 10 Median 3Q Max
-0.19352 -0.08264 -0.01824 0.06678 0.41358
Coefficients: fEics ]
Estimate std. Error t value Pr(>|t]) CoefTicients: Estimate std. Error t value Prés|t])
— o -
iﬂ?iﬁcgﬁt) 6??'22? 12'3:513 loi'géi < ﬁe;i (Intercept) 659.758 6.366 103.641 < 2e-16 *¥x
cent_LFRQ 25.518 4.975 -5.129 9.51le-07 %% gsﬂafgf{g ggg; 1i'§§i ;;’gi 6 sgé}gﬁ rn
deviat_SP:cent LFRQ -14.315 9.950 -1.43%  0.152 deviat_sP:cent_LFRQ -14.872 9.742 -1.527  0.129
Signif. codes: 0 “*¥*' 0,001 ‘**’ 0.01 ‘*’ 0.05 *.7 0.1 ° ' 1 ;—_T;]n—]f_ codes: 0 f®%x’ (Q_001 ‘**’ 0.0l ‘*' Q.05 ‘.’ 0.1 * ' 1

(Dispersion parameter for gaussian family taken to be 5999.61)

(Dispersion parameter for Gamma family taken to be 0.01336772)

1021421
839945

2.1768
1.7638

Null deviance:
Residual deviance:
AIC: 1652.5

Null deviance:
Residual deviance:
AIC: 1667.3

on 143 degrees of freedom
on 140 degrees of freedom

on 143 degrees of freedom
on 140 degrees of freedom

* Model coefficients (intercept and slopes for the various effects) come close between the two
approaches, but are not exactly the same (because of different model assumptions)

* The Gamma (identity) model (AIC = 1652.5) fits the data slightly better than the standard linear
model (AIC = 1667.3)

e The difference in AIC would be more dramatic with trial-level data!!



# Perform glm() using Gamma (identity)
glm.mod2 <- glm(RT ~ deviat SP * cent LFRQ,
data = RT.data,
family=Gamma (identity))
summary (glm.mod?2)

# Perform glm() using Gamma (log)
glm.mod3 <- glm(RT ~ deviat SP * cent LFRQ,

data = RT.data,
family=Gamma (log) )
summary (glm.mod3)

call:
glm(formula = RT ~ deviat_SP * cent_LFRQ, family = Gamma(identity),
data = RT.data)

Deviance Residuals:

Min 1Q Median 3Q Max
-0.19352 -0.08204 -0.01824 0.00678 0.41358
Coefficients:

Estimate Std. Error t value Pr(x|t]|)

(Intercept) 659.758 6.366 103.641 <« 2e-16 ***
deviat_SP 17.657 12.732 1.387 0.168
cent_LFRQ -25.335 4.871 -5.201 6.88e-Q7 *¥*
deviat_SP:cent_LFRQ -14.872 9.742 -1.527 0.129
Signif. codes: 0 “*%¥' Q. 001 ‘**’ Q.01 **' 0.05 .7 0.1 * " 1

(Dispersion parameter for

Null deviance: 2.1768
Residual deviance: 1.7638

Gamma family taken to be 0.01336772)

on 143 degrees of freedom
on 140 degrees of freedom

call:
glm(formula = RT ~ deviat_SP * cent_LFRQ, family = Gamma(log),
data = RT.data)

Deviance Residuals:
Min 1qQ
-0.19282 -0.08385

Max
0.41512

Median
-0.01777

3Q
0.06544

Coefficients:

Estimate std. Error t value Pr(=|tl)

(Intercept) 6.490445 0.009636 673.579 < 2e-16 ¥***
deviat_SP 0.025380 0.019272 1.317 0.190
cent_LFRQ -0.038598 0.007427 -5.197 7.0le-0Q7 ¥*¥*
deviat_SP:cent_LFRQ -0.021403 0.014853 -1.441 0.152
Signif. codes: 0 “¥*¥*' 0,001 ***' 0.01 **’ 0.05 *.” 0.1 * ' 1

(Dispersion parameter for Gamma family taken to be 0.0133701)

Null deviance: 2.1768
Residual deviance: 1.7633
AIC: 1652.5

on 143 degrees of freedom
on 140 degrees of freedom

AIC: 1652.5

* Model coefficients (intercept and slopes for the various effects) are now very different:
* Inthe Gamma (identity) model, estimates and SEs are in the original RT-units (milliseconds)
* Inthe Gamma (1log) model, estimates and SEs are in log(RT)-units (log milliseconds)

* In this instance, goodness of fit stays the same (A/C = 1652.5 in each case)



So, what’s the best ‘family recipe’ for RT data...?

Better use your brain / good theories - not recipes!

From experience with modelling RT data (or other types of naturally
positively skewed DVs), | can tell that cGamma (identity) yields much
better fits than a standard linear approach (gaussian (identity))

A better fit means better modelling of the generative processes behind
the data, and often yields improved power

A Gamma (1log) (Or Gamma (inverse)) model may also make sense, but
remember that non-identity link functions change the theoretical
interpretation of your model coefficients (e.g., turning additive
relations into multiplicative ones when considering the original DV)

Justify which model family you are using

Never ever ‘shop around’ for model families giving the nicest p-values!



How important is the ‘correct’ family?

For continuous data, the ‘default’ normal distribution /
identity link assumption (cf. ANOVA, 1m () ) actually does a
fairly good job in most cases

ANOVA, for example, has been shown to be remarkably
robust against violations of normality

— If anything, such violations are detrimental to power, but not to
Type | error rate (e.g., Khan & Rayner, 2003)

However, other types of data require more careful

consideration of the correct model family (for theoretical

and statistical reasons)

A prominent example are binary categorical data which
will be discussed next



* Goal: Predict a continuous DV (y) from a continuous IV (x),
assuming a linear relationship between the two

Vi = ﬁO + ﬁlxi ’
Yi=Yite
where
y;= predicted value of y; 0 ! ) ; .

x; = value of the predictor variable
fo = the intercept (or regression constant): the value of y; when x =0
1 = the slope (or regression coefficient): the difference
in y; associated with a one-unit increase in X
e; = prediction error (residuals)



 Both IV and DV are measured on interval scale (continuous data)

— Can theoretically range from —co to +c0

* Linearity / additivity

 Homoscedasticity
— Constant variance of residuals over the entire x-range, e.g.

homoscedastic not homoscedastic
O
o) o (0] o O

O
009 ,0°8 7% o

g 00 Boo © 2.8 8 ° oo °

§ §88 0 8 §88600 o© o ©°
B o) & o
o 8 ' | | | o 5 '
0 5 10 15 20 0 5 10 15 20

* Normality of residuals
— e;~N(0,0)



Binary categorical DVs

Sometimes the values of the DV of interest come in only two
flavours, i.e.Oor 1

Female/Male, pregnant/not pregnant, correct/incorrect, ... etc.

That is, what we want to do is to somehow predict the probability
of belonging to one or the other category as a function of our 1V(s)

Linear regression would not work in this case

Binary data are nominal scale (discrete), and their probabilities are bound
between 0 and 1 (with small / large x;, linear regression will result in y;-values
<0 or >1)

The relationship between x and y will not be linear

Normality? The appropriate distribution for numbers of ‘1s’ in a sequence of
independent Bernoulli (0,1) trials is actually the binomial distribution

Heteroscedasticity of residuals: the closer predicted probability values are to O
or 1, the smaller the corresponding residual variances will be (error variance
will be greatest when predicted probability is around .5)



Binary categorical DVs

Sometimes the values of the DV of interest come in only two
flavours, i.e.Oor 1
— Female/Male, pregnant/not pregnant, correct/incorrect, ... etc.

That is, what we want to do is to somehow predict the probability
of belonging to one or the other category as a function of our IV

Linear regression would not work in this case

— Binary data are nominal scale (discrete), and their probabilities are bound
between 0 and 1 (with small / large x;, linear regression might well result in
y;-values <0 or >1)

— The relationship between x and y will not be linear

— Normality? The appr| Note: For binary variables, the A sequence of
independent Bernou| population variance is P(1) x P(0)  pution

— Heteroscedasticity o] Thus, / values areto 0
or 1, the smaller the with P(1) =.5, 0% =.5x.5=.25 rror variance
will be greatest wherl  with P(1)=.1,0%=.1%x.9=.09

etc.




Let’s suppose we randomly sampled 500 Scottish adults and
measured their body height in cm

| generated such a dataset using the following parameters:
N =500

gender ~ U(0,1) => roughly 50% males

height | gender =0 ~N(163.5,6.1)

height | gender=1 ~N(178.2,7.0)

values taken from Wikipedia

Goal: We want to predict a person’s gender from their body height
— Classification problem with
e Continuous IV (height in cm)
* Binary DV (female =0, male = 1)



subj_ID 1helgh;56.8gender - Being male (gender = 1) as a function of height
2 166.9 0
3 164.5 0
4 191.6 1
5 161.5 0
6 182.8 1
7 180.7 1
8 162.2 0
9 164.4 0
10 166.9 0
11 178.4 0 ‘
12 155.9 0 140 150 160 170 180 190 200
13 1611 0 Height (cm)
14 154.2 0
15 161 0
16 1806 1+ DV (male) is coded as 0 (for female) or 1 (for male)
17 162.5 0
i: 1722 ; e If you plot the data in R using:
53.
20 165.6 0 plot (gender ~ height)
21 184.4 1

It would look like the above



S 1helgh1t56.8gender 0 Being male (gender = 1) as a function of height
2 166.9 0 1
3 164.5 0 7]
4 191.6 1
5 161.5 0
6 182.8 1
7 180.7 1
8 162.2 0
9 164.4 0
10 166.9 0
11 178.4 0 T
12 155.9 0 . 190 200
13 161.1 0 Height (cm)
14 154.2 0
15 161 0 . ]
16 1806 1+ When we look at the probability of being male (here, for
17 1625 0 ] )
18 1795 1 each 5% height-bin), we see that P(gender=1) as a
T function of height follows a roughly “S-shaped”
21 184.4 1

(sigmoid) function

* Thisis a natural consequence of the two partially overlapping normal height-
distributions (one for males and one for females)



* The probability of being male as a function of height — or more
generally, the probability of a given binary category y as a function
of x (IV) — can be modelled by the following equation:

o = PG HBix) !
T T exp(f, + P1x;) 1+ exp(—(B, + L1xi))




* The probability of being male as a function of height — or more
generally, the probability of a given binary category y as a function
of x (IV) — can be modelled by the following equation:

’—_———-~

__ e + b1X:)” 1
Py XLyt L1X0)

— oy,

= ——~———_ Or
1+exp(B, + 1xi), 1+ exp(—(B, + B1x))

—_—o mm =

Looks suspiciously like our good old linear regression model
- More later!




s = PG HBix) 1
i —
1+ exp(f, + f1x;) 1+ exp(—=(B, + f1x:))
Variation in intercept (Bo)
1
——
332 =
07 / /
£ 06 / / /
B oo / /S / B0 =0.0
5 o / /S / )
£, 77 7 —B0=06
0.2 /;// B0 =-0.6
Y ——
P09 B 65 43 2401234567880
Predictor Values (X)

(B = 0.5)




PG = exp(B, + f1xi) or 1
Y 1+exp(Bo +Bixi)  1+exp(=(B, + B1xy))
Variation in slope(p:)
1 ——
313 /S -
07 //
Z 06 y/
E 0.5 —B1=0.5
&0 7/ —B1=09
o —— p1-03
0o 576 5 4321012545678
Predictor Values (X)

(Bo = 0.0)




oy Gt Bix) 1
Y 1+exp(Bo +Bixi)  1+exp(=(B, + B1xy))
Variation in slope(:)

o.sla \\\\
07 BN\

N\

§o.5 —B1=-0.5

g o NN —B1=-09
0s AN B1=-03
0.1 \\\\
106 57 6543210125 45678s10

Predictor Values (X)

(Bo = 0.0)




Instead of probabilities, we could also conceptualize the problem in
terms of odds

What are the odds of being male given a certain probability of

being male?

. __ P(male) _ P(male)
Answer: odds(male) = P(female) . 1—P(male)
More generally: odds(y) = 16531()3,)

Say, if in a given sample the probability of being male is .6, the odds
of being male are .6/.4 = 1.5, i.e. in that sample, it’s 1.5 times more
likely to find males than females.

odds(y)
1+odds(y)
Probabilities and odds have different properties, e.g.:

— P(y) ranges from 0 to 1, but odds(y) ranges from 0 to +oo

To convert odds back into probabilities, use: P(y) =



The natural logarithm of odds(y) is called log odds or logit

logit(y) = In(odds(y)) = In( PO) )

Where In(x) refers to the log based on Euler’s number (ca.

1-P(y)

2.7182818284590452353602874713527...)

Logits have the following properties:

If odds(y) = 1; P(y) = .5;logit(y) =0

If odds(y) < 1; P(y) < .5;logit(y) <0

If odds(y) > 1; P(y) > .5;logit(y) >0

The logit transform fails if P(y) = Oor P(y) = 1
Logits range between —oo to +o0



logits as function of probability

01 02 03 04 05 06 07 08 09 1
p

To convert logits back into probabilities, use
the inverse logit function:

__exp(logit)
- 1+exp(logit)

In the “middle” probability
range, small changes in P imply
small changes in logit

When probabilities approach
one of the logical boundaries (0
or 1), small changes in P imply
large changes in logit
Compensates for the
heteroscedasticity problem
associated with probabilities



Since:

S exp(f, + B1x;)

POD = T ew (B + o)
It follows that:
P(J’l)

And therefore:

In (220 = 8, + By,

1-P(y;i)

In other words: Applying a logistic function to P(y) is pretty much
the same as applying a linear function to the log odds (or logit) of
P(y) - which is essentially what binary logistic regression does!



Variation in intercept (Bo)

-109 8 -7 6 5-4-3-2-1012 3 456 7 8 910
Predictor Values (X)

-°09 8 -7 6 -5-4-3-2-101 2 3 456 7 8 910
Predictor Values (X)

Variation in intercept (Bo)
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g
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Variation in slope (B:)
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Estimation and error distribution

In standard linear regression, estimation is based on minimizing
sums of squared residuals (SS,.5) for which simple arithmetic
solutions exist

With non-linear models (e.g., logistic), an iterative approach based
on maximum likelihood estimation must be taken (maximising

P(y[x))

Usually requires specification of convergence criteria such as
maximum number of iterations and/or ‘stop’ thresholds (e.g., if
likelihood doesn’t improve by more than .00001 then stop
iterating).

Since we are basically dealing with probabilities of binary outcomes,

the residuals cannot be normally distributed; instead logistic
regression assumes a binomial distribution of the errors.



* Let’s go back to the original example (gender as a function of
height)
 New, smaller dataset (N = 200), but generated from the same
parameters:
— gender ~ U(0,1)
— height | gender=0~N(163.5,6.1)
— height | gender=1~N(178.2,7.0)

# Example Data
height.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Logist/heightl.csv")
summary (height.data)

subj_ID height gender
M1 . : 1.00 Min. :148.7 M. 0. 000
1st Qu.: 50.75 1st Qu. :162.4 1st Qu. :0.000
Median :100.50 Median :170.2 Median :0.000
Mean :100. 50 Mean :170.1 Mean :0.485
3rd Qu. :150.25 3rd Qu. :176.7 3Ird qQu. :1.000
Max. 2200, 00 Max. 202,77 Max. :1. 000



We can clearly see that males and females were drawn from
different (normal) height distributions by running a t-test

# t-test with height as a function of gender
t.test (height ~ gender, data=height.data)

welch Two Sample t-test

data: height by gender
T = -15.1484, df = 183.835, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-16. 98571 -13.0/7106
sample estimates:
mean in group O mean in group 1
162.7922 177.8206

However, we are actually interested in gender as a function of height, for
which we need to perform a logistic regression in glm ()



# Performing the binary logistic glm()
glm.out <- glm(gender ~ height, family = binomial (logit),
data=height.data)

call:
glm{formula = gender ~ height, family = binomial(logit), data

Deviance Residuals:
Min 1q Median 30 Max
-2.23458 -0.378EY -0.043a66 0.38169 2.11286

Coefficients:
Estimate 5td. Error z value Pr{=|z|)
(Intercept) -61.6156 8.9583 -6.878 6.07e-12 =¥**
height 0. 3623 0.0527 6.875 6.18e-12 #¥%*
signif. codes: 0O ®#*#=' Q_001 °*=*° 0.01 °“*" 0.05 *." 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.08 on 199 degrees of freedom
Residual deviance: 119.60 on 198 degrees of freedom
AIC: 123.6

Number of Fisher Scoring iterations: 6

height.data)



# Performing the binary logistic glm()
glm.out <- glm(gender ~ height, family = binomial (logit),

data=height.data)

Call:

glm{formula = gender ~ height, family = binomia

Deviance Residuals:

Min 1q Median 30 M3
-2.23458 -0.37887 -0.04366 0.38169 2.1128
Coefficients:

EstimateNgtd. Error z value Pr{=|z|
(Intercept( -61.6156 8. 9583 -6.878 6.07e-1
0. 3623 .05 o 6.18e-1

height

LR

i1

.D. Eor iy !

signif. codes: 0.001 0.01 0.0

(Dispersion parameter for binomial family taken

Null deviance: 277.08 on 199 degrees of f
Residual deviance: 119.60 on 198 degrees of f
ATIC: 123.6

Number of Fisher Scoring iterations: 6

The all-important coefficient estimates (in
logit units!)

Thus:

log odds (male)
= —61.62 + 0.36 X height

In other words, we can predict that for
every 1 cm increase in height, the odds
for being male increase by a factor of
exp(0.36) = 1.433 times

Intercept: At 0 cm body height, the
likelihood of being male is

exp(—61.616 —
B )= 1.74 x 10?7
1+exp(—61.616)
(note: body-height is not mean-centred!)




# Plot gender against height:
x <- height.dataSheight
y <- height.dataSgender

E)]_()t: (><I Yr
xlab = "height (in cm)",
ylab = "P(male)")

title("Gender as a function of height")

# Create new data frame with variables x =

# height and y = fitted probabilities from

# glm output

NF <- data.frame (x=height.dataSheight,
y=glm.outSfitted)

# order the data in NF in increasing height
NF <- NF[order (NFS$SX), ]

# draw a line using the x and y values in NF
lines (NFSx, NFSy, type='l', col='red',6 1lwd=2)

P{male)

10

08

08

04

02

0.0

Gender as a function of height

cold 3] X fare N2

150 160 170 180 190 200

height (in cm)



A potentially more interesting example

e Fabricated data (shamelessly stolen from the internet)

* Goal: Predict the likelihood of being admitted to graduate school
(1 = admitted; 0 = not admitted) from a combination of 3
predictors:

— GRE (Graduate Record Exam scores, continuous)
— GPA (Grade Point Average, continuous)
— UIP (Udergrad. Institution Prestige, rank scores 1 “top notch” —4 “meh”)

 Data from 400 imaginary “candidates”, each measured on all 4

# Admission Data
AM.data <- read.csv ("http://www.psy.gla.ac.uk/~christop/MScStats/2018/Logist/admission.csv")
head (AM.data)

cand GRE GPA UIP admit
380 3F.61
ol 3.67
800 4.00
040 3.19
520 2.93
Fa0 3.00

Chown o= L Ba
Chown o= L P
P L e L L
Fod b b L0 L
HoRRFERFEO



# First, mean centre the continuous predictors GRE and GPA

AM.dataS$SGRE.cn
AM.dataS$SGPA.cn

# Treat UIP as
# mean-centred

<- AM.data$SGRE - mean (AM.dataS$SGRE)
<- AM.data$GPA - mean (AM.dataS$SGPA)

ORDINAL predictor

forward-difference coding (higher means

# UIP=1 (“best") serves as reference

AM.data$UIP.2cn <- scale(ifelse (AM.data$UIP < 2,1,0),
AM.data$UIP.3cn <- scale(ifelse (AM.data$UIP < 3,1,0),
AM.data$UIP.4cn <- scale(ifelse (AM.data$UIP < 4,1,0),
# (note that UIP scores are not evenly distributed in

head (AM.data)

cand GRE
1 1 FE0 3.61
2 2 660 3.67
3 3 BOO 4,00
4 4 640 3.19
5 5 520 2.93
¥ @ 760 3.00

Fod e b oL Ll

0
1
1
1
0
1

GPA UIP admit GRE.cCn
=207,

72,
212.

52.
-67.
172.

L ™ LA L L

GPA. CN
0.2201
0.2801
0.6101
-0.1999
-0.4599
-0. 3899

UIP.Z2cn UIP. 3Cn

0.1525
0.1525
-0. 8475
0.1525
0.1525
0.1525

0.53
0.53
-0.47
0.53
0.53
-0.47

scale
scale
scale

“worse"),

FALSE)
FALSE)
FALSE)

the sample)

UIP.4Cn
-0.1675
-0.1675
-0.1675

0.8325

0.8325
-0.1675



* Let’s assume we were primarily interested in the main effects of
the three predictors and in 2-way interactions between UIP
(ordinal predictor) and each of the two continuous predictors
(GRE and GPA)

# Run glm()
AM.model <- glm(admit ~

# main effect terms:
GRE.cn + GPA.cn + UIP.2cn + UIP.3cn + UIP.4cn +

# 2-way

UIP.2cn:

# 2-way

UIP.2cn:
data = AM.

interaction terms (effect of GRE per level of UIP):
GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn +
interaction terms (effect of GPA per level of UIP):
GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,

data,

family = binomial (logit))



# Output
summary (AM.model)

call:

gim{formula = admit ~ GRE.cCn + GPA.cCn + UIF.2cn + UIP.3cn + UIP.4cCn +
UIF.Z2Cn:GRE.cCcn + UIFP.3cn:GRE.cn + UIF.4cCn:GRE.Cn + UIP. ZCn:GPA.Cn +

UIFP. 3cn:GPA.cn + UIP.4cn:GPA.cn, family = binomial(logit),

data = AM.data)
Deviance Residuals:

Min 1q Median
-1.7079 -0.8733 -0.0400

Coefficients:

Estimate std.
(Intercept) -0.8434975 0
GRE.Chn 0.0023568 0O
GPA.CH 0.7719848 0O
UIP. Z2Cn 0.0448543 0
UIF. 3cCn 0.0440438 0O
UIF.4dcn 0.2470394 0O
GRE.cCn:UIP.2cn 0.0008969 O
GRE.cn:UIP. 3cn -0.0017106 O
GRE.cn:UIP.4cn 0.0010642 O
GPA.CN:UIP.2cn 0.2671126 O
GPA.CN:UIFP. 3cn 0. 3764967 0
GPA.CN:UIP.4cn -0.6625897 1
Ssignif. codes: 0O *#%=' 0,001

3q

1.16E89

1180201
0011206
. 3451315
. 3243385
. 2892630
. 3992485
. 00304324
. 0028181
. 0036449
.9174933
LB412258
2122904

Max

2.0978

CoOooO0OOONE

Fawt o001

7

2.
2.237

1032

OBE
. 229
.619
. 295
. 607
. 292
L2091
A48
. 347

o000 0O000O00

0,05

Error z wvalue pPri=|z|)
147 B.BVe-13
L0355
L0253
L0468
L0258
L5361
. 7682
. 5438
L7032
L7709
.6545
. 5847

%

k- =

T % % %

LT 0.1

(ispersion parameter for binomial family taken to be 1)

NMull deviance: 499,98 on 399 degrees of freedom
Residual deviance: 457.73 on 388 degrees of freedom

AIC: 481.73

1



# Output
summary (AM.model)

call:
glm{formula = admit ~ GRE.Cn + GPA.cCn + UIP.2cn + UIP.3cCcn +

UIP.4cCn +

UIP.2cn:GRE.cn + UIP.3cn:GRE.cCn + UIP.4cn:GRE.cn + UIP.
UIFP. 3cn:GPA.cn + UIP.4cn:GPA.cn, family = binomial{logi
data = AM.data)

Deviance Residuals:
Min 1q Median g Max
-1.7079 -0.8733 -0.0400 1.168%9 2.0978

Coefficients:
Estimate std. Error z wvalue pPri=|z|)

(Intercept) -0.8434975 0.1180201 -7.147 B.87e-13 ###
GRE. cn 0.0023568 0,0011206 2.1032 0.0355 =
GPA. CH 0.771984E 0.3451315 2.237 0.0253 =
UIP.2cCn O.6448543 0.3243365 1.988 0.0468 =
UIP. 3cCn O.6446438 0.2892636 2.229 0.0258 =
UIP.4cn 0.2470394 0. 3992485 0.6819 0.5361
GRE.cn:UIP.2cn  O.0008B969 0.0030434 0. 295 0.7682
GRE.cn:UIP.3cn -0.0017106 0O.0028181 -0.607 0.5438
GRE.cn:UIP.4cn  0.0010642 0.0036449 0,292 0.7703
GPA. CN:UIP.2cn  0.2671126 0.9174533 0.291 0.7709
GPA. Cn:UIP. 3cn 0. 3764967 0.8412256 0.448 0.6545
GPA. Cn:UIP.4cn -0.6625897 1.2122904 -0,547 0. 5847
Signif. codes: 0O *##*=' Q. 001 *#**° Q.01 °** Q.05 *." 0.1 °

(ispersion parameter for binomial family taken to be 1)

Intercept (mean-centred predictors!):
The overall likelihood of admission is
exp(-0.843) / (1 + exp(-0.843)) = 0.30

Main effect of GRE (higher GRE means
increase in admission likelihood)

Main effect of GPA (higher GPA means
increase in admission likelihood)

UIP main effect (smaller[=“better”] UIP
scores mean higher admission
likelihood, except UIP=3 vs. UIP=4)

No significant interaction terms

NMull deviance: 499,98 on 399 degrees of freedom
Residual deviance: 457.73 on 388 degrees of freedom
AIC: 481.73




e Say, we were interested in the main effect of UIP (4-level ordinal
predictor):

# Run a glm() without
AM.noUIP <- glm(admit
GRE

data

UIP main effect parameters

~

.cn + GPA.cn + # UIP.2cn + UIP.3cn + UIP.4cn +
UIlP.
UIlP.

2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn +
2cn:GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,
AM.data,

family = binomial (logit))

# Compare with previous model
anova (AM.noUIP, AM.model, test="Chi")

Analysis of Deviance Table

Model 1: admit ~ GRE.cn + GPA.cn + UIP.2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.Ch +
UIP.Z2Cn:GPA.CN + UIP. 3Cn:GPA.CN + UIP.4Cn:GPA.CNH

Model 2: admit ~ GRE.cn + GPA.cn + UIP.2cn + UIP.3cn + UIP.4cn + UIP.2cn:GRE.cCn +
UIF.3cCcn:GRE.Cn + UIP.4Cn:GRE.Cn + UIP.Z2cn:GPA.Cn + UIP.3cn:GPA.Cn +

UIP.4Cn:GPA. €N

Resid. Df Resid. Dev Df Deviance Pr{=chi)

1 301 477,24

2 388 457.73 3 19,507 0.0002148 www

Signif. codes: 0 *##%' 0,001

Peel Q.01 f% 0.05 .7 0.1 7 "1



Say, we were interested in the main effect of UIP (4-level ordinal
predictor):

# Run a glm() without
AM.noUIP <- glm(admit

UIP main effect parameters

~

GRE
UIP
UIP

.cn + GPA.cn + # UIP.2cn + UIP.3cn + UIP.4cn +
.2cn:GRE.cn + UIP.3cn:GRE.cn + UIP.4cn:GRE.cn +
.2cn:GPA.cn + UIP.3cn:GPA.cn + UIP.4cn:GPA.cn,

data AM.data,
family = binomial (logit))

# Compare with previous model
anova (AM.noUIP, AM.model, test="Chi")

Analysis of Deviance Table

Model 1: admit ~ GRE.
UIP.Z2Cn:GPA.CN +

Model 2: admit ~ GRE.
UIF. 3Ccn:GRE.Cn +
UIP.4Cn:GPA. CN

cn + GPA.cCn + UIP.2cn:GRE.Cn + UIP.3cn:GRE.cCn + UIP.4cCcn:GRE.cCn +
UIP. 3CN:GPA.CR + UIP.4cCcn:GPA.CRN

cn + GPA.cCn + UIP.Z2cn + UIP.3cn + UIP.4cn
UIF.4cCn:GRE.Cn + UIP.Z2cCn:GPA.Cn + UIP. 3cCn:

Thus:
The main effect of UIP is significant:

Resid. Df Resid. Dev Df Deviance Pr{=chi)
1 391 477.24 LRy? = 19.507, df = 3, p < .001
2 388 457.73 3 19,507 0.0002148 &%=
Signif. codes: 0 *##%' 0.001 °*+' 0.01 °**' 0.05 . 0.1 * " 1



Amnalysing rank data using
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Ordinal data

* Are data from which one can reasonably only make assertions
about relative rankings of observations along some latent
dimension (e.g., “trustworthyness”, “attractiveness”, “degree of

/(] ”

agreement”, “grammaticality”, “plausibility”, etc.)
* Rating data (e.g., Likert scales) typically fall into this category

* Analysing such data using standard linear models (t-test,
ANOVA, linear mixed models) often leads to inaccurate
inferences (Type | and Type Il errors) due to

— Violation of linear modelling assumptions (normality, homoskedasticity)
— lgnoring that ratings are bounded between a minimum and a maximum

— Ascribing more information to the data than the scale actually supports

* a mean of 2.734 refers to an observation that cannot possibly be made on a 1-2-3-4-5
scale

* equal differences on the rating scale do not necessarily mean equal differences in the
property being measured



* Perhaps the biggest theoretical problem with ratings is that we don’t know their
relation to the latent dimension of interest (can even vary across subjects and trials)

~ 3 0 ~+~ o r~

-

Close to linear = equal distances
on the scale mean (roughly) equal
distances in the property being
measured; differences on the
scale can be ranked (=> ordered
metric scale)

Non-linear = equal distances on
the scale do not mean equal
distances in the property being
measured; differences on the
scale can not be ranked



Ordinal data

e Perhaps the biggest theoretical problem with ratings is that we don’t know their
relation to the latent dimension of interest (can even vary across subjects and trials)

= * Close to linear = equal distances
- on the scale mean (roughly) equal
2 distances in the property being

Better use a conservative approach that

only takes rank- and distributional

information into account

* Non-linear = equal distances on
the scale do not mean equal
distances in the property being
measured; differences on the
scale can not be ranked




Ordinal data modelling

* Fortunately, a variety of different R packages (but see also
GEE/GLMM in SPSS) have emerged in recent years that allow
for appropriate modelling of ordinal data

* There’s little excuse for using procedures relying on calculation
of means (t-test, ANOVA, etc.) anymore

* Non-parametric tests like Mann-Witney U, Wilcoxon signed-
ranks test, etc., are equally bound to become historic side-notes
— Can’t model complex (factorial) designs
— Not very accurate

— Not very flexible/powerful in accounting for repeated-measures
dependencies

— Do not allow for simultaneous generalization of findings across subjects
and items



* Here, | will primarily focus on cumulative models as
implemented in the R package ordinal (Christensen, 2018)

which uses a frequentist approach to inferencing and is
comparable to glm () (base R) and 1me4 (mixed effects

modelling)

 Comes with a superb vignette and tutorial



Ordinal logistic regression

ordinal package: An Implementation of cumulative link
(mixed) models also known as ordered regression models,
proportional odds models, proportional hazards models for
grouped survival times and ordered logit/probit/... models.

Mathematically, part of the generalized linear model family

In essence, modelling scale-point occurrences in terms of a
GLM assuming a multinomial distribution and a cumulative link
(logit, probit, cauchit, loglog, or cloglog)

| will henceforth call it ordinal logistic regression, as | will only
use the logit link here

Two functions
— clm() -comparabletoglm()in base R (independent measures!)
— clmm () —comparableto (g) lmer in 1lme4 (mixed models)



not attractive [1]-------- [2]------- [3]------

Let’s assume we asked 100 male and 100 female
participants to rate the attractiveness of a photo
of Dr. Dale Barr (right) on a scale from 1-5

Every subject (N=200)
provides only one rating,
and we are interested
whether males and females
differ in their judgements

Let’s assume the
distribution of ratings looks
like this ->

40

35 -

30 A

25 -

15 -

10 -

[5] very attractive

Rating

5

" male

I B female



e Let’s assume we asked 100 male and 100 female
participants to rate the attractiveness of a photo
of Dr. Dale Barr (right) on a scale from 1-5

not attractive [1]-------- [2]------- [3]-------

* The cumulative percentages
would look like this ->

------- [5] very attractive

100 ~

1 2 3 4 5

90
80
70
60
50
40
30
20
10

0

Rating

" male

H female



e Let’s assume we asked 100 male and 100 female
participants to rate the attractiveness of a photo
of Dr. Dale Barr (right) on a scale from 1-5

not attractive [1]-------- [2]------- [3]-----—-- [4]------- [5] very attractive

 And the log odds of the 3
cumulative percentages
(“cumulative logits”) would
look like this -> .

* That’s what is being
modelled in ordinal logistic
regression

- 3 £ M
(SN (&}

. mmale

H female

-+ =M O -

Rating



# get the data (included in web-folder)
daleratings <- read.csv ("dalerate.csv")

head (daleratings)

subject gender rating

1 1 female 4
2 2 male 1
3 3 male 3
4 4 male 1
5 5 female 4
6 6 male 3

# Code predictor (gender),; dummy coding should suffice (simple 1-way design)
daleratingsSfemale <- ifelse(daleratings$gender=="female",1,0)

# IMPORTANT: turn DV into a factor!
daleratingsSattract <- factor (daleratingsS$rating)

head (daleratings)

subject gender rating female attract

1 1 female 4 1 4
2 2 male 1 (4] 1
3 3 male 3 (4] 3
4 4 male 1 0 1
5 5 female 4 1 4
6 6 male e (4] 3



# load ordinal package
library(ordinal)

# run ordinal logistic model
ordinal.mod <- elm(attract ~ female, data = daleratings)
summary (ordinal .mod)

formula: attract -~ female
data: daleratings

Tink threshold nobs TlogLik AIC niter max.grad cond.H
logit flexible 200 -304.84 619.68 5(0) 5.84e-11 2.1e+01

Coefficients:
Estimate 5td. Error z value Pri=|z|)
female 0.4731 0.2543 1. 86 0.0629 .

Threshold coefficients:
Estimate 5td. Error z value

1|2 -1.82206 0.2491 -7.31e6
2|3 -0.5017 0.1940 -2.586
34 0.6292 0.1961 3.208

415 2.3524 0. 2689 B.748

signif. codes: 0 “#*=®=' Q0,001 ***' Q.01 °“*' 0.05% *." 0.1 °* " 1



# load ordinal package
library(ordinal)

# run ordinal logistic model
ordinal.mod <- elm(attract ~ female, data = daleratings)

summary (ordinal .mod)

formula: attract -~ fema
data: daleratings

1link threshold nobs 1
logit flexible 200 -

Coefficients:
Estimate std. Er
female 0.4731 0.2

signif. codes: 0 f#®®’

* Instead of a single intercept, one obtains K (number of scale
points) — 1 cumulative logit ‘threshold’ coefficients

* For males (X = 0), the estimated cumulative probability of
choosing scale point ...
1is exp(-1.8226)/(1+exp(-1.8226)) = 0.139 (~14%),
2 (or lower) is exp(-0.5017)/(1+exp(-0.5017)) = 0.377 (~38%),
3 (or lower) is exp(0.6292)/(1+exp(0.6292)) = 0.652 (~65%),
4 (or lower) is exp(2.3524)/(1+exp(2.3524)) = 0.913 (~91%)
5 (or lower) is 1 (100%)

Threshold coefficients:

Estimate 5td. Error
1|2 -1.8226 0.2491
213 -0.5017 0.1940
3|4 0.6292 0.1961

415 2.3524 0.2689

Z value
-7. 316
-Z2. 586

3.208
§.748




# load ordinal package
library(ordinal)

# run ordinal logistic model
ordinal.mod <- elm(attract ~ female, data = daleratings)

summary (ordinal .mod)

formula: attract ~ fem

data: daleratings

1link threshold nobs 1
logit flexible

200 -

a| * The effect of being female (X=1) on the attractiveness ratings

is positive, but only marginally so (p < .07)

* Specifically, compared to males, females are
exp(0.4731)/(1+exp(0.4731)) = 61.6% more likely to choose a
higher attractiveness rating

Coefficients:

Estimate std.

female 0.4731

signif. codes:

ﬂ. gy d

Error z value Pri=|z|)
0.2543 1. 86 0.0629 .

0.001 **#' Q.01 °**' 0.05% *." 0.1 ¢ " 1

Threshold coefficients:

1|2
2|3
34
415

Estimate 5td.
-1.8226

-0. 5017
0.6292
2.3524

Error
0.2491
0.1940
0.1961
0. 2689

Z value
-7. 316
-Z2. 586

3.208
§.748




Different threshold assumptions

* Viathe threshold argument, it is possible to change
assumptions about ‘spacing’ of scale categories:
— threshold="flexible” (default): each scale category (minus the
highest one) gets its own cumulative logit threshold
— threshold="“equidistant”: scale points are assumed to be
evenly spaced
— threshold="symmetric”: scale points are assumed to be evenly
spaced below/above scale centre (apparently a good choice in
‘polarised’ scales like 1 = very unattractive — 7 = very attractive)
* Apart from requiring fewer parameters, the symmetric and
equidistant options make stronger assumptions about the scale
— Requires theoretical justification and/or AIC model comparison (see
example at the end of next session)

— As always, do not “shop around” for settings that give you the best p-
values!



# run ordinal logistic model with equidistant thresholds
ordinal . .mod2?2 <- clm(attract ~ female,

data = daleratings,

threshold = "equidistant")
summary (ordinal .mod?2)

fﬂrmUWa:Jﬁttract —~ femﬁWE
data: daleratings

Tink threshold nobs logLik AIC niter max.qrad cond.H
logit equidistant 200 -307.56 621.12 4(0) 4.94e-07 3.0e+01

Coefficients:

Estimate 5td. Error z value Pri=|z|)
female 0.4795 0.2552 1.879 0.0603 .

Signif. codes: 0 *#%=' (0_.001 ***' 0.01 °“*° 0.05 *." 0.1 * °

Threshold coefficients:

Estimate std. Error z wvalue
threshold.1 -1.91279 0.22469 -B,.5123
5pacing 1.34765 0.08203 14.644

1



# run ordinal logistic model with equidistant thresholds

ordinal.mod2 <- clm(attract ~ female,

summary (ordinal .mog¢

formula: attract ~
data: daleratinj

link threshold
lTogit eguidistant

Coefficients:
Estimate 5t

female 0.4795

signif. codes: 0

Now there is only one ‘intercept’ threshold (threshold.1), plus a
spacing parameter that needs to be successively added.
Thus, for males (X=0), the estimated cumulative probability of

choosing scale point ...

1is exp(-1.9128)/(1+exp(-1.9128)) = 0.129 (~13%),

2 (or lower) is

exp((-1.9128+1.3477))/(1+exp((-1.9128+1.3477))) = 0.362 (~36%),

3 (or lower) is

exp((-0.5651+1.3477))/(1+exp((-0.5651+1.3477))) = 0.686 (~69%),

4 (or lower) is

exp((0.7826+1.3477))/(1+exp((0.7826+1.3477))) = 0.894 (~89%)

5 (or lower) is 1 (100%)

Threshold coefficients:

Estimate 5td.
threshold.1 -1.91279
1.347865

spacing

Error z value
0.22469 -EB.513
0.08202 14.644




Summary

Generalized Linear Models (g1m () ; see also c1m () in ordinal
package) are an extension/generalization of standard linear models
(Im () )

— 1m()isin fact a special case of g1lm ()
Same principles in terms of predictor coding & model formulae

family argumentin glm () allows for the specification of
distribution and link functions appropriate for modelling non-
normally distributed DVs and/or non-linear relationships in the data

Examples: Gamma regression, binary and ordinal logistic regression

Important: 1m (), glm (), and c1lm () assume independent-
measures data (one observation per variable per sampling unit)

To model repeated-measures data (multiple observations per
variable per sampling unit), we need to extend things even further
— Generalized Estimating Equations (GEE)
— Generalized Linear Mixed Models (GLMMs)



