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Words and rules

▶ Traditional vision of learning inflection: general rules + lists of
exceptions

▶ Early psycholinguistic research (e.g. Miller 1967) took the
productivity of regular morphology as an indication of innate
knowledge of linguistic structure.
▶ If all speakers do is reproduce patterns of cooccurrence they have

already encountered, how can they inflect novel lexemes?
▶ Suggests speakers are attempting to acquire abstract rules.

▶ In addition, two early intriguing results:
▶ In wug tests (Berko, 1958), speakers readily extend irregular patterns

if wugs are similar enough to to existing irregulars (Bybee & Slobin
1982).

▶ U-shaped learning of inflection: as vocabulary grows, drop in
accuracy followed by new gain (Brown 1996): first mice, then mouses,
then mice.
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Rumelhart & McClelland
▶ Rumelhart and McClelland (1986) argue that all three observations

(productivity, subregularity, u-shape) can be accounted for without
positing rules.

▶ Basic idea: speaker behavior simply follows from the statistical
structure of the data they are exposed to. Regular inflection is
more frequently used because it is more frequent in the date.

▶ Implementation based on a simple, early 1-layer neural network.
▶ Arguably the most spectacular early success of using neural

networks in cognitive science.

LEARNING THE PAST TENSE 5

THE MODEL

The goal of our simulation of the acquisition of past tense was to simulate the three-stage
performance summarized in Table 1, and to see whether we could capture other aspects of
acquisition. In particular, we wanted to show that the kind of gradual change characteristic of
normal acquisition was also a characteristic of our distributed model, and we wanted to see
whether the model would capture detailed aspects of the phenomenon, such as the change in
error type in later phases of development and the change in difference in error patterns
observed for different types of words.

We were not prepared to produce a full-blown language processor that would learn the past
tenre from full sentences heard in. everyday experience. Rather, we have explored a very simple
past -tense learning environment designed to capture the essential characteristics necessary to
produce the three stages of acquisition. La this environment, the model is presented, as learn-
ing experiences, with pairs of inputsone capturing the phonological structure of the root
form of a word and the other capturing the phonological structure of the correct past-tense
version of that word. The behavior of the model can be tested by giving it just the root form
of a word and examining what it generates as its "current guess" of the corresponding past-tense
form.

Structure of the Model

The basic structure of the model is illustrated in Figure 1. The model consists of two basic
parts: (a) A simple patter,: associator network similar to those studied by Kohonen (1977; 1984;
see Chapter 2) which learns the relationships bc:wcen the base form and the past-tense form,
and (b) a decoding network which converts a featural representation of the past-tense form
into a phonological representation. Al: learning occurs in the pattern associator; the decoding
network is simply a mechanism for converting a featural representation which may be a near
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The dual route alternative
▶ This led to a fury of criticism and new research, initially mostly led

by Steven Pinker and colleagues (Pinker and Prince, 1988; Marcus
et al., 1992; Prasada and Pinker, 1993; Marcus et al., 1995; Pinker,
1999).

▶ Main criticisms:
▶ Rumelhart and McClelland’s U-shaped learning results from a

specific and unrealistic timing of training data.
▶ Identification of various phenomena not predicted by Rumelhart

and McClelland’s approach but widely attested.
▶ Regular inflection is used “by default” for borrowings, compounds, etc.,

even on strings that are undistinguishable from known irregulars:
low-lifes, not *low-lives, etc.

▶ Irregular inflected forms are lexical unites, not regular ones:
mice-eater vs. rats-eater, etc.

▶ Main innovation: dual-route learning and processing
▶ Regulars are derived by rule.
▶ Irregulars are stored in an associative memory akin to Rumelhart

and McClelland’s network.
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The role of context I

▶ Pinker and colleagues argued on the basis of homophones (e.g.
brake vs. break) that phonology was not enough to predict correct
past tenses (Pinker & Prince 1988), but independently that
semantics information played no role, and would actually get in
the way, as irregulars sharing a pattern typically do not share
semantic features (sing, sting, swing, etc.)

▶ In early work, Ramscar (2002) showed that speaker’s willingness to
use an irregular pattern is affected by semantic similarity:

1. In a traditional spring rite at Moscow University Hospital, the terminally ill patients all
frink in the onset of good weather, consuming vast quantities of vodka and pickled
fish. In 1996, his favorite vodka glass in hand, cancer patient Ivan Borovich
––––––––––––– around 35 vodka shots and 50 pickled sprats; it is not recorded
whether this helped in his treatment.

2. In a classical symptom of Howson’s syndrome, patients all frink in their right eye if
they are left handed or left eye if right handed, their eyelids opening and closing
rapidly and uncontrollably. In 1996, in extreme discomfort due to his bad eye,
Howson’s patient Ivan Borovich ––––––––––––– around 35 times per minute for two
days, causing severe damage to the muscles in his left eyelid.
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The role of context II
▶ In addition, this still holds if the verbs are clearly presented as

denominal, a context where Pinker and colleagues predict that
regularity should prevail.

1. A frink is the Muscovite equivalent of the Spanish tapas; it is served in bars, and
usually comprises chilled vodka and some salted or pickled fish. In a traditional
spring rite at Moscow University Hospital, the terminally ill patients all frink in the
onset of good weather, consuming vast quantities of vodka and pickled fish. In 1996,
his favorite vodka glass in hand, cancer patient Ivan Borovich ––––––––––––– around
35 vodka shots and 50 pickled sprats; it is not recorded whether this helped in his
treatment.

2. The frink is the common name for the motor muscle that controls the opening of the
eyelid. It is especially prone to neurological interference. In a classical symptom of
Howson’s syndrome, patients all frink in their right eye if they are left handed or left
eye if right handed, their eyelids opening and closing rapidly and uncontrollably. In
1996, in extreme discomfort due to his bad eye, Howson’s patient Ivan Borovich
––––––––––––– around 35 times per minute for two days, causing severe damage to
the muscles in his left eyelid.

▶ Relatedly, Ramscar and Dye (2011) provide evidence that the
acceptability of *rats-eater type examples is affected by
manipulating the semantic context.
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What is to be modelled?

▶ Ramscar (2021)’s central argument:
▶ Rumelhart and McClelland were doing one thing right: modelling

learning using discriminative networks.
▶ Both Rumelhart and McClelland and Pinker and colleagues are doing

one thing wrong: focusing on an irrealistic learning task.
▶ Children are not exposed to pairings of stems and inflected forms,

they are exposed to inflected forms in context.
▶ Ramscar suggests that Speaker’s behavior in wug tests (at any age)

is a consequence of what they have learned, but it is not the
learning objective.
▶ The learning objective is understanding and using individual words

correctly.
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Discriminative learning
▶ Three different but related senses of discriminate:

1. In animal learning: discrimination learning is learning to associate
different responses with different stimuli (Rescorla & Wagner, 1972)

2. In machine learning: a discrimination model is a machine learning
model attempting to maximize P(target | predictor) (Ng & Jordan,
2002)

3. In human learning: discriminative learning names the family of
error-driven learning models, including neural networks and
cognitive models grounded in Rescorla & Wagner’s (1972) equations
(Ramscar et al. 2010)

▶ For 15 years Ramscar has advocated that the Rescorla-Wagner
model of behavioral conditioning:
▶ Should be seen conceived as discriminative rather than associative,

as it relies crucially on learning from errors and not just
remembering associations.

▶ Grounds human learning of language.
▶ Explains various properties of human language.
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The Rescorla-Wagner model I
▶ We are interested in finding out how agents produce outcomes

when exposed with cues.
▶ This is modelled by a two-layer fully connected network, where

weights on the edges indicate how strongly a given cue signals an
outcome.

C1

C2

C3

C4

O1

O2

O3

O4

▶ Learning the network is learning to adjust the weight matrix so that
the right cues predict the right outcomes.
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The Rescorla-Wagner model II

▶ Simplified formulation of the Rescorla-Wagner equations Chuang
and Baayen (2021):
Given a network relating cues Ci to outcomes Oi with weights wij, a
learning event at time t leads to the following update:

wt+1
ij = wt

ij + Δwt
ij,where

Δwt
ij =


0 if ABSENT(Ci, t)
𝛼
(
1 −∑

PRESENT(Ck,t) wkj
)

if PRESENT(Ci, t) and PRESENT(Oj, t)
𝛼
(
0 −∑

PRESENT(Ck,t) wkj
)

if PRESENT(Ci, t) and ABSENT(Oj, t)

with the learning rate 𝛼 small.
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The Rescorla-Wagner model III

▶ In other words, when the learner witnesses a set of cues together
with a set of outcomes:
▶ The link of these cues with these outcomes is upgraded
▶ The link of these cues with these outomces is downgraded
▶ The extent of this upgrading/downgrading is a function of the total

previous weights of all presently seen cues.
▶ Note the (non-coincidental) similarity with backpropagation in

neural networks.
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Learning a word I

▶ Ramscar et al. (2010) apply the RW model to learning a word, i.e.
how a unique discrete label relates to a large set of features in the
context.

discriminate in favour of more reliable inputs and against
less reliable inputs. A further important result of this
process is that it inevitably follows that many elements
of the input patterns fed to the rule in training will in
fact be entirely disassociated from output patterns that
they co-occur with.

Accordingly, although the Rescorla and Wagner
(1972) learning rule was originally proposed as part of
an elemental model couched in associative terms (see
also Ellis, 2006; Miller et al., 1995; Siegel & Allan, 1996),
Ramscar et al. (2010) argue that because it actually
implements an error-driven learning mechanism, for
most purposes (an exception is described below) it is
best understood by re-conceptualising learning as an
discriminative process that reduces a learner’s uncer-
tainty about events in the world by learning to ignore
them.

These considerations have significant implications for
the way that learning is conceptualised. In particular, the
nature of learning appears to suggest that there are
strong constraints on what children can be expected
to learn as they master the use linguistic of forms in
context. To illustrate one of the more critical of these
constraints Ramscar et al. (2010) conducted a series of
analyses and simulations that show how, as a conse-
quence of the role that cue competition plays in error-
driven learning, the temporal structure of information
can play a crucial role in determining whether or not dis-
criminative learning actually occurs. The nature of this
constraint can be best illustrated by first considering
the effects of learning in a context in which a set of
complex stimuli predict a set of discrete elements (i.e.
when a large cue set is used to predict a smaller set of
outcomes), and then comparing it to its inverse, a
context in which a set of discrete elements predicts a
set of complex stimuli (when a small set of cues is
used to predict a larger set of outcomes; see Figure 1).

In the first of these two learning scenarios, the fea-
tures of things (events, objects, actions, etc.) in the
world serve as cues to the forms used to talk about
them labels (Feature-Label learning), an information
structure that naturally allows for features to compete
as cues to labels (Figure 1, left). To explain why, consider
a child being shown one of the objects in Figure 2, and
being told, “Look! A wug”, If we assume that the child
learns in the way error-driven learning models
suppose, their mind will reinforce all of the features of
the object to “wug”. This means if they later encounter
another identical object, then given its shape they will
(implicitly) expect it to be a wug. However, it is impor-
tant to note here that if they then hear “Look! It’s a
wug”, then although this will strengthen the connection
between this set of features and “wug”, it will not help
them to learn how to use “wug” appropriately. This is
because given their current knowledge, and given the
overlap in the features of all of the objects shown in
Figure 2, they will assume that the objects in centre
panel are also wugs, when in fact they are nizzes.

To learn to discriminate wugs from nizzes, our child
will (implicitly) need to make some prediction errors.
Suppose they next encounter a niz, the object in the
centre panel of Figure 2, and hear, “Look! It’s a…”
Given their prior experience, they will be expecting to
hear “wug”. However, because the expectation that
they will hear “wug” is erroneous (they actually hear
“niz”), they will learn to devalue the features of wugs
that they erroneously supposed to be cues to “niz”
(namely their highly salient but uninformative body
shapes). That is, they will learn that they are less likely
to hear “wug” when this feature is present than they
had supposed. This process will cause value to shift
from features that produce more error to those that
produce less: the less salient wug features will be
implicitly strengthened as a cues to “wug” simply
because the value of the wug body shape feature has
been devalued. This in turn means that despite the
fact that they never heard the word “wug” in this
context, the child’s understanding of wugs will have
actually improved after they learned about “nizzes”.
And because the converse will happen next time they
hear a wug described in a similar context, our child
will soon learn to discriminate the right conditions in
which to expect (and use) the labels “wug” and “niz”.

However, when these relationships are reversed (see
Figure 3), such that labels serve as cues (Label-Feature
learning), cue competition becomes somewhat proble-
matic. This is because only one cue will be present in
speech at any given time, and – as is hopefully
obvious – a single cue cannot compete with itself. If a
cue is reinforced in isolation, then the shift in value

Figure 1. The possible relations (links) between a discrete label
(e.g. a word or an affix) and the features of a high-dimensional
context / object as events and labels occur in learning / time.
Feature-to-Label learning (left) will facilitate cue competition
between features, and abstraction of the informative dimen-
sions that predict labels. Given that only a single cue occurs,
competition is impossible in a Label-to-Feature relationship
(right), which will simply facilitate learning of the probabilities
of the features given the label.

LANGUAGE, COGNITION AND NEUROSCIENCE 9

▶ They argue that it is crucial for learning to go from features to label
(i.e. from meaning to form).
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Learning a word II

between competing cues described in the scenario
above cannot occur, simply because there are no com-
peting cues for it to lose value to. Because of this, the
value of an isolated cue will simply rise and fall in iso-
lation. (It is perhaps worth noting here that although
labels themselves also comprise different features, in
language these sub-features do not tend to correlate
with objects and events in the world in meaningful or

systematic ways, which means that cue competition
among these features is unlikely to result in the learning
of either stable or informative patterns.) Accordingly, it
follows that Label-Feature learning will not be discrimi-
native. It will simply lead to the learning of the likelihood
of each feature given the label instead. (Again, it should
be noted that this is very much a theoretical analysis – in
the real world, when it comes to actual word learning, it

Figure 2.When different sets of features predict different labels, the non-discriminating features will be dissociated from the labels as
a result of cue competition.

Figure 3. When single labels predict sets of features in isolation, learning will simply result in the conditional probability of each
feature given each label being learned.

10 M. RAMSCAR

Cue Outcome S0 S1 S2 S3

grey wug 0 0.1 0.1 0.181
grey niz 0 0 0 -0.01
black wug 0 0 -0.01 -0.01
black niz 0 0 0.1 0.1
bird wug 0 0.1 0.09 0.171
bird niz 0 0 0.1 0.09
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Learning a word III

between competing cues described in the scenario
above cannot occur, simply because there are no com-
peting cues for it to lose value to. Because of this, the
value of an isolated cue will simply rise and fall in iso-
lation. (It is perhaps worth noting here that although
labels themselves also comprise different features, in
language these sub-features do not tend to correlate
with objects and events in the world in meaningful or

systematic ways, which means that cue competition
among these features is unlikely to result in the learning
of either stable or informative patterns.) Accordingly, it
follows that Label-Feature learning will not be discrimi-
native. It will simply lead to the learning of the likelihood
of each feature given the label instead. (Again, it should
be noted that this is very much a theoretical analysis – in
the real world, when it comes to actual word learning, it

Figure 2.When different sets of features predict different labels, the non-discriminating features will be dissociated from the labels as
a result of cue competition.

Figure 3. When single labels predict sets of features in isolation, learning will simply result in the conditional probability of each
feature given each label being learned.

10 M. RAMSCAR

Cue Outcome S0 S1 S2 S3

wug grey 0 0.1 0.1 0.19
niz grey 0 0 0 0
wug black 0 0 0 0
niz black 0 0 0.1 0.1
wug bird 0 0.1 0.1 0.19
niz bird 0 0 0.1 0.1 0.1

Cue Outcome S0 S1 S2 S3

grey wug 0 0.1 0.1 0.181
grey niz 0 0 0 -0.01
black wug 0 0 -0.01 -0.01
black niz 0 0 0.1 0.1
bird wug 0 0.1 0.09 0.171
bird niz 0 0 0.1 0.09
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Learning a word IV
▶ Experimental confirmation: learning ambiguous words such that

▶ There is a prominent nondiscriminative feature (main shape)
▶ Other features are fully discriminative, but have an unbalanced

distribution
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Learning a word V
Human learning matches the predictions of the model: low
frequency associations are learned only in the FL presentation order.

As a further demonstration of the role of information
structure in discrimination learning, Ramscar et al. (2011)
showed how these analyses can also account for some of
the difficulties children have learning to use number
words (as Figure 6 shows, colour and number word
learning have much in common). Training children on
2, 4 and 6 in a Feature-Label configuration (children
were shown a set of objects, e.g. bears, and asked,
“What can you see? Bears. There are four”) not only
improved children’s ability to discriminate sets of 2, 4
and 6, it also improved their ability to discriminate sets

of 3, 5 and 7. This latter improvement, which occurred
despite the fact that only 2, 4 and 6 were ever shown
in training, is of course consistent with the analysis of
a child learning to use “wug” above, which emphasised
the fact that although reinforcement is important in
learning, the discrimination of the correct cues to
labels ultimately relies on prediction error. Further con-
sistent with the analyses above, Ramscar et al. (2011)
found that training children in Label-Feature configur-
ation (“What can you see? There are two balls”) did not
improve their performance.

Figure 4. The category structures employed by Ramscar et al. (2010). Note that the fribble body types (circled in panel A) do not
discriminate between the categories. Accordingly learners must learn to inhibit (unlearn) these features in order to successfully
learn both the low frequency and high frequency subcategories. The features learners need to positively weigh in order to successfully
discriminate between the low-frequency “dep” and high-frequency “tob” subcategories are circled in panel B. (Stimulus images cour-
tesy of Michael J. Tarr, Carnegie Mellon University, http://www.tarrlab.org/)

Figure 5. The predictions of delta-rules simulations plotted against the performance of participants in the fribble category learning
experiment (Ramscar et al., 2010). The control category was designed to check there were no learning differences between the two
groups other than those predicted and comprised exemplars that all shared one, highly salient feature (all were blue). Because learn-
ing simply involved making a binary pairing between the colour blue and the category label, performance was on this category
expected to be identical regardless of whether LF and FL training was given. Reproduced with permission from Ramscar et al.
(2010) Cognitive Science, 34, 909–957 (Wiley-Blackwell).

12 M. RAMSCAR
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Learning an inflection system I
▶ The results above suggest that agents do not learn “a meaning” for

words (or morphemes), they learn to carve regions of the feature
space that correspond to a word.

▶ Application to inflection: when hearing an inflected word in
context, the hearer must decide which features are coded.

underlying model of the world leads to their saying
“mouses”, the form “mouses” is reinforced as a response.
In the second scenario, production would be driven by
the child’s model of their intended behaviour (their
intention to simply repeat what they have observed),
and it is the factors that lead the child to produce the
behaviours that are reinforced in the underlying
model, not whatever noisy behaviour emerges from
them.

This latter perspective (which is often called model-
based learning, Dayan & Berridge, 2014) assumes that a
child who erroneously produces “mouses” was in fact
trying to say “mice”, simply because “mice” was the
form they had heard previously in multiple mouse con-
texts. Accordingly, because “mice” was the form they
had stored in their memory as part of their model of
the world, what gets updated in learning is the child’s
model – and the representations that led to the child’s
intended behaviour – rather than the behaviour that
results from a particular instance of a child “running
their model”. (In other words, the models assume that
learning in children proceeds in much the same way as
it proceeds in a pair of trainee ballroom dancers, in
whom practice leads the performance of the right
steps, and not merely their continually treading on
each other’s toes.)

Using a computational simulation to demonstrate
how learning a model of the world in this way can
lead to behaviours that wax and wane as internal rep-
resentations develop, Ramscar and Yarlett (2007)
showed how an error-driven model learning from the
distribution of plural forms in English predicted that at
an appropriate stage in learning, the elicitation of
over-regularised forms from children would reduce like-
lihood that they would over-regularise in the future. In
a series of experiments, Ramscar & Yarlett then

showed that children exhibited the behaviour predicted
by the model: When seven-year-old children repeatedly
produced the same plurals across blocks of trials, their
rates of over-regularisation went down in later blocks.
This behavioural change was observed even when chil-
dren were given positive feedback on the incorrect
forms they produced, lending further support to the
idea that learning reinforces children’s models of the
world, and not simply their behaviour.

Ramscar and Dye (2009) and Ramscar et al. (2013b)
then presented a series of models that indicated that
when the challenges facing a child learning noun
forms are explicitly set up in the way shown in
Figures 1 and 2, the distribution of forms and seman-
tics in English invariably leads to what has been
described as “U-shaped” performance in plural pro-
duction. These models predicted that children’s
mastery of correct irregular forms would be preceded
by a phase in which both correct and incorrect irregu-
lar plurals were produced. Notably, they further pre-
dicted that the ultimate elimination of the
interference that gives rise to over-regularisation
would be driven by the error caused by the inappropri-
ate expectation of irregular forms (e.g. mice) when the
semantics of regular forms are present in a lexical
context. In other words, the models showed how the
same non-discriminative semantic dimension that
causes children to expect a sibilant final form in an irre-
gular context – leading to over-regularisation – also
causes them to expect irregular forms in regular con-
texts, gradually causing the non-discriminative seman-
tic cues to be unlearned as cues to irregulars, and thus
reducing over-regularisation.

Further, unlike in the original Rumelhart and McClel-
land model, this U-shaped pattern of learning did not
rely on manipulating the input in a controlled

Figure 7. (A) Some of the semantic / contextual dimensions that will be reinforced by a child’s exposure to the word “mice” in context.
(B) A more abstract representation of the relative specificity of the four dimensions as cues to the forms that comprise singular and
plural nouns. While less specific cues will receive positive reinforcement early in learning, because of their ubiquity they will produce
more error than the uniquely informative cue multiple mouse items. Cue competition will thus cause the influence of the less specific
cues to wane as children’s experience grows.

16 M. RAMSCAR
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Learning an inflection system II
▶ Simulation: using the RW equations, learn associations between

collections of 4 features and 1 or 2 morphs (2 for regular plurals, 1
for singulars and irregular plurals)

▶ Likelihood of producing mice over time:
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 fully incremental evaluation of the model's predictions to be made; cf. McCauley &
 Christiansen 2011). To estimate these response propensities, we calculated the activa
 tion each response received from the cues to mice and then calculated an interference
 value—the activation of mouse plus the activation of +S at the end of a common
 form—which was subtracted from the activation of the appropriate response, mice. If
 the interference value is greater than the activation of mice, this subtraction yields a
 negative value, indicating a bias toward overregularization. Conversely, when the acti
 vation of mice is greater than the summed activations of the competing responses, the
 bias is to produce the correct form (Figure 8).

 production propensity for 'mice'  production propensity for 'mice'

 5000 10000 15000 20000 25000 30000

 Index

 5000 10000 15000 20000 25000 30000

 Index

 a.  b.

 production propensity for 'mice'

 :zz
 0 5000 10000 15000 20000 25000 30000

 Index

 a.

 production propensity for 'mice'

 V
 *—1 : 1 1 1 ! 1
 0 5000 10000 15000 20000 25000 30000

 Index

 b.

 Figure 8. Panel (a) plots development of irregular plural production in the model, showing its response
 propensity at each point in time when the cues to mice are present. Negative values favor overregularized
 responses; positive values favor correct irregular plural responses. To illustrate the relative robustness of this
 result, panel (b) plots the same pattern of development in a second implementation of the model in which the

 ratio of regular singular forms to plurals was 70 : 30, as observed in the Reuters corpus.
 Consistent with U-shaped learning, both models produced initial periods in which

 correct forms precede overregularizations.

 Although this simple model ignores a range of factors that will influence specific in
 stances of overregularization (e.g. linguistic context also influences the predictability—
 and overregularization—of irregular forms; Arnon & Clark 2011), it successfully
 captures how the tendency toward overregularization first arises as a result of the fre
 quency of different word forms and the frequency and distribution of the cues to them,
 and then later diminishes as a function of the distribution of error among those same
 cues. (The R code required to implement this version of the model is included in the ap
 pendix; exploration will reveal that so long as a representation of the learning problem
 respects the distribution of cues and lexical outcomes, this pattern of performance is ro
 bust.) This developmental trajectory exhibits the classic U-shaped learning pattern—
 where production mixes correct and incorrect forms prior to settling on the correct
 form—previously noted in the development and resolution of children's overregulariza
 tion (Brown 1973, Marcus et al. 1992).

 6.6. Simulating plural learning with naturalistic input. In order to test the

 scalability of the model as well as its performance when exposed to naturalistic input,
 we extracted nouns from a corpus of child-directed speech taken from the CHILDES

This content downloaded from 
             193.54.110.56 on Thu, 17 Feb 2022 12:16:47 UTC              

All use subject to https://about.jstor.org/terms

▶ U-shaped learning follows from the distribution of forms in the
input data plus discriminative learning of words from contexts.
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Why do languages have irregular forms?

▶ Conventional view:
▶ Irregular morphology is a bug, not a feature: languages would be

better off without it.
▶ Irregular morphology is the consequence of unsystematic language

change.
▶ Ramscar et al. (2018):

▶ Regulars and irregulars contrast in discriminative value: suppletion
entails maximal discriminability in the form dimension.

▶ Suppletion is the extremum of a gradient of discriminability, not a
discretely different case.

▶ The value of regular morphology lies in its poor discriminative
power: as the cues for a morphosyntactic distinction are unspecific,
they can be redeployed productively to make sense of unseen words.
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Why then is language uniquely human?

▶ The paper ends with speculations on why, if the learning
mechanisms crucial to language are shared with all animals, only
humans have language.

▶ Suggestive evidence from neuroscience: compared to other
primates, humans are characterized by a slower elimination of
synaptic connections in the brain that is also uneven in its pace
across brain areas.

▶ Leads to the following conjecture: an inability to filter attention to
the input is crucial to acquiring structured conventional knowledge.

▶ Children need to not jump to conclusions to learn that the plural of
mouse is mice.
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Key insights

▶ Learning inflection is learning to pair meanings with words.
▶ Training data + a general, well-understood learning algorithm are

enough to make sense of basic insights on the learning and
processing of morphology, once one focuses on the right learning
task.
▶ Compare Malouf (2017): training data + general machine learning

methods (LSTMs) are enough to produce an inflectional synthesizer
with superhuman performance.

▶ A series of conjectures on the nature of meaning, the design
properties of language, etc.
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Roadmap

▶ This was the first of a series on discriminative learning and
morphology:
▶ 25/2: Naive discriminative learning, based on Fabian Tomaschek

et al. (2021). “Phonetic effects of morphology and context: Modeling
the duration of word-final S in English with naïve discriminative
learning.” In: Journal of Linguistics 57.1, pp. 123–161

▶ 04/03: (relevant) intermission: Distributional semantics and
morphological relatedness

▶ 11/03: Morphology reading group
▶ 18/03: Linear discriminative learning, (probably) based on

R. Harald Baayen et al. (2019). “The Discriminative Lexicon: A Unified
Computational Model for the Lexicon and Lexical Processing in
Comprehension and Production Grounded Not in (De)Composition
but in Linear Discriminative Learning.” In: Complexity 2019,
p. 4895891
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