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Morphophonetics
▶ Mainstream linguistic theories, and models of speech production,

assume a modular design with no direct relationship between
morphology and phonetics:

MORPHOLOGY ←→ PHONOLOGY ←→ PHONETICS
▶ Yet various recent studies document subphonemic effects of

morphology and/or the lexicon:
▶ Free and bound stems differ acoustically (Kemps et al. 2005).
▶ The duration of a suffix is influenced by its contextual and

paradigmatic probability (Cohen 2014).
▶ The duration of an affix is influenced by its segmentability, i.e., how

salient the stem-affix boundary is (Hay 2007).
▶ ‘Homophonous’ affixes are found to have measurably different

realizations.
▶ In particular, Plag, Homann, and Kunter (2017) document differences

in duration of word-final [s] or [z] depending on whether it is
morphemic, and, if morphemic, on the identity of the suffix (nominal
plural, verbal PRS.3PL, genitive, GEN.PL, reduced has, reduced his)
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The present study

▶ Two goals:
1. Large scale replication of the Plag, Homann, and Kunter (2017) study
2. Attempt to understand why the differences in duration are the way

they are.
▶ They do this using measures of predictability derived from a network

trained using discriminative learning principles.
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Replication study I

▶ Buckeye corpus (Pitt et al. 2007): 300 000 words of conversational
speech by 40 speakers from Colomus, Ohio. The corpus is fully
transcribed with automatic but hand-corrected alignment of words
and phones.

▶ 28,928 tokens of word-final /s/ or /z/ in the corpus.F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

Voiced Unvoiced

s 1470 10141
3rdSg 832 2846
GEN 42 180
Has/is 622 5133
PL-GEN 0 12
Plural 1367 6095

Table 1
Number of S tokens in each morphological function split by voicing for the

replication study (s = non-morphemic final S, 3rdSg = 3rd person singular, GEN = genitive,
PL-GEN = plural genitive).

Plag et al. (2017), we collapsed the has and is clitics into one class, as it is not
possible to differentiate between the two by means of automatic pre-processing.

Following Plag et al. (2017), we included several predictors as controls. A fac-
tor VOICING (with levels voiced and unvoiced) was implemented indicating
whenever a periodic pitch pulse was present in more than 75% of the duration of
the segment. A factor MANNERFOLLOWING coded for the manner of articulation
of the segment following S (levels ABSENT, APPROXIMANT, FRICATIVE, NASAL,
PLOSIVE, and VOWEL). Random intercepts for SPEAKER and WORD were also
included. A factor CLUSTER with levels 1, 2, and 3 was included to control
for the number of consonants in the coda, where 1 equals a vowel-S sequence.
Two covariates were included, the local speech rate and the duration of the base
word. Speaking rate was calculated by dividing the number of syllables in a
phrase by the duration of that phrase. As in the Plag et al. (2017) study, base
word duration was strongly correlated with word frequency (Spearman’s rank
correlation r � 0.69), and to avoid collinearity in the tested data, frequency was
not included as a predictor (see Tomaschek, Hendrix & Baayen 2018b for effects
of collinearity in regression analyses). We used linear mixed-effect regression
as implemented in the lme4 package (version: 1.1–12 Bates et al. 2015) using
treatment coding for all factors.

Table 2 presents the estimates of the coefficients of the model and the corre-
sponding standard errors and t-values. In order to establish which morphological
functions differed in mean durations, we tested all pair-wise contrasts between
the different types of S using the difflsmeans function from the lmerTest
package (Kuznetsova, Brockhoff & Bojesen Christensen 2014).

Compared to monomorphemic words ending with S, S duration was shorter
when S realized PLURAL, 3RDSG, GEN, and HAS/IS. Plag et al. (2017) observed
a difference as well for genitive plurals, but for the full Buckeye, this contrast
was not supported. Furthermore, as in the study of Plag et al. (2017), the S was
articulated with shorter duration when realizing HAS or IS compared to when
it realizes plurals or the third person singular. Plag et al. (2017) observed an
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Replication study II

▶ Linear mixed-effect model predicting log duration from:
▶ ExponentFor: Morphological type of s (reference level:

nonmorphemic)
▶ Voicing
▶ Cluster: number of consonants in the coda, including the S
▶ MannerFollowing: manner of articulation of the next segment

(reference level: non next segment)
▶ LocalSpeechRate: syllables/second in a 20 second window
▶ BaseDuration: duration of the rest of the word, with the S stripped.
▶ Random intercepts for speaker and word.

▶ Importantly, frequency was not included, as it correlates strongly
with base duration (r = −0.69).
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Replication study III
▶ Results: P H O N E T I C E F F E C T S O F M O R P H O L O G Y

Estimate Std. error df t-Value

Intercept �1.52 0.02 148.39 �69.93
ExponentFor = 3rdSg �0.10 0.02 1372.72 �5.65
ExponentFor = GEN �0.15 0.03 5647.45 �5.46
ExponentFor = has/is �0.15 0.02 1416.32 �7.33
ExponentFor = PL-GEN �0.12 0.11 5778.72 �1.08
ExponentFor = plural �0.10 0.01 1380.73 �8.98
Voicing = unvoiced 0.23 0.01 28924.37 35.66
Cluster = 2 �0.19 0.01 5778.52 �26.03
Cluster = 3 �0.29 0.01 6103.94 �19.73
MannerFollowing = app �0.31 0.01 28822.04 �37.63
MannerFollowing = fri �0.52 0.01 28900.28 �71.39
MannerFollowing = nas �0.47 0.01 28872.42 �31.94
MannerFollowing = plo �0.51 0.01 28906.19 �72.46
MannerFollowing = vow �0.43 0.01 28909.55 �62.94
LocalSpeechRate �0.08 0.00 28837.16 �38.43
BaseDuration 0.19 0.01 16193.21 32.88

Table 2
Coefficients and associated statistics for the mixed-effect model fit to the log-transformed

duration of S, using the full Buckeye corpus (app = approximant, fri = fricative,
nas = nasal, plo = plosive, vow = vowel).

interaction of EXPONENTFOR by VOICING, but this interaction did not replicate
for the enlarged dataset. The differences between the present analysis and that of
Plag et al. (2017) have two possible sources. First, Plag et al. (2017) manually
inspected all data points and curated the automatic annotations and segmentations
where necessary. By contrast, we followed the annotations and segmentations
provided by the Buckeye corpus, which are also generally manually corrected on
the basis of forced alignments. It is unclear at what level of carefulness the original
manual corrections of the Buckeye corpus were performed. In addition, whereas
misalignment tends to be very consistent and systematic in forced aligners, human
annotators can be biased by their own expectations and create different kinds of
variations in the annotation (Ernestus & Baayen 2011). Therefore, there is no way
to know which annotation can be strongly relied on, especially for phones with
gradual transitions such as sonorants. Second, by considering the full corpus, the
present analysis is possibly somewhat more robust against spurious small-sample
effects. For instance, in the dataset of Plag et al. (2017), there were only 81 voiced
S tokens, as opposed to 563 voiceless S tokens. Table 3 summarizes a comparison
of the significant contrasts for unvoiced S in the small sample of Plag et al. (2017)
with those found in the full corpus used here. Apart from one contrast, all contrasts
are significant in both datasets.
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Replication study IV

▶ All predictors highly significant in the expected direction, except
ExponentFor = PL-GEN.

▶ No interactions.
▶ In addition, significant contrasts in duration between pairs of

exponents: nonmorphemic S is shortest, reduced auxiliaries are
longest.

PL PRS.3G GEN Aux

s × × × ×
PL ×
PRS.3SG ×
GEN ×

▶ This broadly replicates Plag, Homann, and Kunter’s (2017) results,
with some minute differences.
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Naïve discriminative learning
▶ Naïve discriminative learning is a direct implementation of the

learning algorithm we discussed last week, based on the
Rescorla-Wagner equations.

wt+1
ij = wt

ij +


0 if ABSENT(Ci, t)
𝛼
(
1 −∑PRESENT(Ck,t) wkj

)
if PRESENT(Ci, t) and PRESENT(Oj, t)

𝛼
(
0 −∑PRESENT(Ck,t) wkj

)
if PRESENT(Ci, t) and ABSENT(Oj, t)

▶ It is ‘naïve’ by analogy to naive Bayes classifiers: the weights to
outcomes are independent of one another.

▶ Although the implementation is generic, Baayen and colleagues
have used this in a specific context:
▶ Modeling phonological shapes as sets of n-phones (phoneme

ngrams); in this study diphones are used.
▶ Modeling content as “lexomes”. Lexomes are atoms representing the

content of lexemes, words, and “morphological functions”
▶ NB that in Linear Discriminative Learning, to be discussed in a later

session, these are replaced by distributional vectors.
7



Cue to outcome structure I

▶ In most previous morphological work on NDL, the learning task was
to learn word meanings from word forms:

Cues: diphones · · · #d dɔ ɔɡ ɡz z# · · ·

Outcomes: lexomes · · · DOG DOGS PL · · ·
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Cue to outcome structure II
▶ Here (after testing various alternatives) they use a more elaborate

learning task: learning from diphones and the collocational
context coded as a set of lexomes.

▶ Training on the whole Buckeye corpus (286,982 tokens), with
𝛼 = 0.001, 5 word window.

Cues · · · əd dɔ ɔɡ ɡz zb · · · THE DOGS BARK

· · ·

Outcomes
· · · DOG DOGS PL · · ·
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Measures derived from the network I
▶ Activation: sum of all the weights from a given set of cues to a

given outcome.
▶ Sum of red weights in the example below.
▶ This is akin to P(outcome = o | cues = {c1, . . . , cn})
▶ Tells us how well these cues discriminate this outcome.

F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

past-participle forms as a result of reduction (e.g. in pass for passed). Voicing of
S was based on the phonetic transcription provided by the Buckeye corpus.

The findings by Tucker et al. (2019) indicate that speakers have to balance
opposing forces during articulation, one that seeks to lengthen parts of the signal
in the presence of strong bottom-up support and one that seeks to shorten them in
case of high uncertainty. To parameterize these forces, we derived three different
measures from the NDL wide learning network which are used as predictors of S
duration: the S lexomes’ activations, their priors, and their activation diversities.
Table 4 provides an example of a simple NDL network where the diphone cues
for the word form ‘dogs’ are associated with, among others, the lexome of the
morphological function PLURAL. We will discuss each measure in turn.

Table 4
The table illustrates a cue-to-outcome network with a set of cues C with k cues c and a set
of lexome outcomes O with n outcomes o. We illustrate the calculation of NDL measures
for the lexome of the morphological function PLURAL as an outcome, located in the second
column, and its associated cue set C� = ld dO Og gz zb, located in rows 3–7. Each ith

cue c is associated with each jth outcome o by a weight wi, j , representing their
connection strength, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. Summed weights for C�
afferent to o j give the j th activation a. The cues in c1, c2 represent any kind of cues that

might occur in the first and second row.

A lexome’s activation represents the bottom-up support for that lexome, given
the cues in the input. The activation for a given lexome is obtained simply by the
summation of the weights on the connections from those cues that are instantiated
in the input to that outcome (equivalent to the weights marked in red in Table 4).
Hence, activation represents a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of an outcome’s baseline activation, calculated
by the sum of all absolute weights pertinent to the lexome outcome (equivalent
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Measures derived from the network II
▶ Prior: sum of the absolute values of the weights from all cues to a

given outcome.
▶ Sum of absolute values of light gray weights in the example below.
▶ This is akin to P(outcome).
▶ Tells us how much this outcome stands out among all outcomes.

F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

past-participle forms as a result of reduction (e.g. in pass for passed). Voicing of
S was based on the phonetic transcription provided by the Buckeye corpus.

The findings by Tucker et al. (2019) indicate that speakers have to balance
opposing forces during articulation, one that seeks to lengthen parts of the signal
in the presence of strong bottom-up support and one that seeks to shorten them in
case of high uncertainty. To parameterize these forces, we derived three different
measures from the NDL wide learning network which are used as predictors of S
duration: the S lexomes’ activations, their priors, and their activation diversities.
Table 4 provides an example of a simple NDL network where the diphone cues
for the word form ‘dogs’ are associated with, among others, the lexome of the
morphological function PLURAL. We will discuss each measure in turn.

Table 4
The table illustrates a cue-to-outcome network with a set of cues C with k cues c and a set
of lexome outcomes O with n outcomes o. We illustrate the calculation of NDL measures
for the lexome of the morphological function PLURAL as an outcome, located in the second
column, and its associated cue set C� = ld dO Og gz zb, located in rows 3–7. Each ith

cue c is associated with each jth outcome o by a weight wi, j , representing their
connection strength, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. Summed weights for C�
afferent to o j give the j th activation a. The cues in c1, c2 represent any kind of cues that

might occur in the first and second row.

A lexome’s activation represents the bottom-up support for that lexome, given
the cues in the input. The activation for a given lexome is obtained simply by the
summation of the weights on the connections from those cues that are instantiated
in the input to that outcome (equivalent to the weights marked in red in Table 4).
Hence, activation represents a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of an outcome’s baseline activation, calculated
by the sum of all absolute weights pertinent to the lexome outcome (equivalent
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Measures derived from the network II
▶ Activation diversity: sum of the absolute values of the weights

from a given set of cues to all outcomes.
▶ Sum of absolute values of boxed weights in the example below.
▶ This is akin to H(outcome | cues = {c1, . . . , cn}).
▶ Tells us how much these cues segregate outcomes overall.

F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

past-participle forms as a result of reduction (e.g. in pass for passed). Voicing of
S was based on the phonetic transcription provided by the Buckeye corpus.

The findings by Tucker et al. (2019) indicate that speakers have to balance
opposing forces during articulation, one that seeks to lengthen parts of the signal
in the presence of strong bottom-up support and one that seeks to shorten them in
case of high uncertainty. To parameterize these forces, we derived three different
measures from the NDL wide learning network which are used as predictors of S
duration: the S lexomes’ activations, their priors, and their activation diversities.
Table 4 provides an example of a simple NDL network where the diphone cues
for the word form ‘dogs’ are associated with, among others, the lexome of the
morphological function PLURAL. We will discuss each measure in turn.

Table 4
The table illustrates a cue-to-outcome network with a set of cues C with k cues c and a set
of lexome outcomes O with n outcomes o. We illustrate the calculation of NDL measures
for the lexome of the morphological function PLURAL as an outcome, located in the second
column, and its associated cue set C� = ld dO Og gz zb, located in rows 3–7. Each ith

cue c is associated with each jth outcome o by a weight wi, j , representing their
connection strength, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. Summed weights for C�
afferent to o j give the j th activation a. The cues in c1, c2 represent any kind of cues that

might occur in the first and second row.

A lexome’s activation represents the bottom-up support for that lexome, given
the cues in the input. The activation for a given lexome is obtained simply by the
summation of the weights on the connections from those cues that are instantiated
in the input to that outcome (equivalent to the weights marked in red in Table 4).
Hence, activation represents a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of an outcome’s baseline activation, calculated
by the sum of all absolute weights pertinent to the lexome outcome (equivalent
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Precise measures chosen for this study
1. PriorMorph: prior for the target lexome.

▶ Because we have 9 lexomes, there are 9 discrete values to choose
from.

2. ActFromBoundaryDiphone: activation of target lexome by final
diphone of the word of interest.
▶ 9 possible values for each boundary diphone.

3. ActFromRemainingCues: activation of target lexome by all other
cues (diphones and lexomes) present in the 5 word window
centered on the word of interest.
▶ Very varied possible values

4. ActDivFromBoundaryDiphone: activation diversity of the boundary
diphone.
▶ 9 possible values for each boundary diphone.

5. ActDivFromRemainingCues.
▶ Very varied possible values

13



The model I

▶ New model of basically the same data, but using NDL-derived
measures instead of the nominal variable ExponentFor.

▶ This is a Generalized additive mixed model (Wood 2011), a class of
models where the dependent variable is predicted from the linear
combination of (unknown) smoothing functions applied to the
predictor variable.

▶ Final model results from exploratory data analysis starting from
the control variables and adding NDL-derived measures +
interactions step by step.

14



The model II

▶ Linear predictors in the final model:
▶ As before: Manner of articulation of the segment Following S.
▶ Manner of articulation of the segment Preceding S.
▶ As before: Local speaking rate (20 second window).
▶ Individual speaking rate of each speaker over the whole corpus.

▶ Smooth terms:
▶ Interaction between ActFromBoundaryDiphone and

ActDivFromBoundaryDiphone
▶ Interaction between ActFromRemainingCues,

ActDivFromRemainingCues, and LocalSpeakingRate.
▶ PriorMorph

▶ Random intercepts for speaker and word.
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Coefficients tableP H O N E T I C E F F E C T S O F M O R P H O L O G Y

A. Parametric coefficients Estimate Std. error t-Value p-Value

Intercept �2.9179 0.2294 �12.7173 <0.0001
Preceding = fricative �0.0962 0.0299 �3.2151 0.0013
Preceding = nasal �0.1335 0.0233 �5.7229 <0.0001
Preceding = plosive �0.1869 0.0150 �12.4229 <0.0001
Preceding = vowel 0.0106 0.0144 0.7318 0.4643
Following = approximant 0.2839 0.1470 1.9315 0.0534
Following = fricative 0.1036 0.1470 0.7048 0.4809
Following = nasal 0.1089 0.1474 0.7390 0.4599
Following = plosive 0.0850 0.1469 0.5785 0.5629
Following = vowel 0.1310 0.1469 0.8919 0.3725
LocalSpeakingRate �0.0463 0.0211 �2.1874 0.0287
IndividualSpeakingRate 2.3873 0.6633 3.5990 0.0003

B. Smooth terms edf Ref.df F-value p-Value

te(ActFromBoundaryDiphone,
ActDivFromBoundaryDiphone) 14.4458 16.9557 548.4375 <0.0001
te(ActFromRemainingCues,
ActDivFromRemainingCues,
LocalSpeakingRate) 24.7081 32.1035 170.9787 <0.0001
s(PriorMorph) 2.0235 2.3027 84.2267 <0.0001
Random intercepts speaker 37.1278 38.0000 2118.9174 <0.0001
Random intercepts word 458.5028 2280.0000 2190.5616 <0.0001

Table 7
Summary of parametric and smooth terms in the generalized additive mixed model fit to

the log-transformed acoustic duration of S as pronounced in the Buckeye corpus. The
reference level for the preceding and following manner of articulation is ‘absent’.

and an informal point measure of the relative degree of uncertainty about the
parameter estimates.

Figure 1 presents the partial effect of PRIORMORPH. Larger priors go together
with longer durations. This effect levels off slightly for larger priors. Apparently,
inflectional lexomes with a stronger baseline activation tend to be articulated with
longer durations. The 95% confidence interval (or more precisely, as GAMMs
are empirical Bayes, the 95% credible interval) is narrow, especially for predictor
values between 5 and 25, where most of the data points are concentrated.

Recall that PRIORMORPH has nine different values, one for each inflectional
function of S. It is noteworthy that when we replace PRIORMORPH by a factor
with the nine morphological functions as its levels, the model fit decreases (by 10
ML-score units), while at the same time the number of parameters increases by 7.
The NDL prior for the inflectional functions, just by itself, already provides more

145

1D19�12���1%��%%"$
��((( 31�2#947� !#7�3!#��%�#�$ ��%%"$
��4!9 !#7��� �����/������
���������
,!( �!14�4�6#!���%%"$
��((( 31�2#947� !#7�3!#� �0 9D�#$9%��4��.1#9$��! ������2������1%���
		
����$C2:�3%�%!�%����1�2#947���!#��%�#�$�!6�C$��

16



Relevant partial effects I
▶ Larger prior (i.e. overall salience of the lexome) lead to longer

durations.F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

Figure 1
Partial effect of PRIORMORPH in the GAMM fit to S duration, with 95% confidence

(credible) interval.

precision for predicting the duration of English S. Further precision is gained by
also considering the activation and activation diversity measures.

Figure 2 presents the partial effect of the interaction of ACTFROMBOUNDARY-
DIPHONE and ACTDIVFROMBOUNDARYDIPHONE, which we modeled with
a tensor product smooth. The left panel presents the contour lines with 1SE
confidence intervals; the right panel shows the corresponding contour plot in color
to facilitate interpretation, with darker shades of blue indicating shorter S and
warmer yellow colors denoting longer S. The narrow confidence bands in the left

Figure 2
Partial effect in the GAMM fit to log-transformed S duration of the activation and

activation diversity of the boundary diphone. In the right plot, deeper shades of blue
indicate shorter acoustic durations and warmer shades of yellow denote longer durations.

The left plot presents contour lines with 1SE confidence bands.
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▶ Comparison with a model where the nominal variable ExponentFor
from the previous study replaces Prior: model fit decreases while
number of parameters increases.

▶ Hence the numerical variable Prior leads to better precision than
the nominal variable.
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Relevant partial effects II

▶ Overall, larger activation leads to
longer durations

▶ Overall, larger activation diversity
leads to shorter durations

▶ Shortest durations are found for
larger values of activation and largest
values of activation diversity.

▶ Longest durations are found when
lowest values of activation diversity
combine with not too low values of
activation.

F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

Figure 1
Partial effect of PRIORMORPH in the GAMM fit to S duration, with 95% confidence

(credible) interval.

precision for predicting the duration of English S. Further precision is gained by
also considering the activation and activation diversity measures.

Figure 2 presents the partial effect of the interaction of ACTFROMBOUNDARY-
DIPHONE and ACTDIVFROMBOUNDARYDIPHONE, which we modeled with
a tensor product smooth. The left panel presents the contour lines with 1SE
confidence intervals; the right panel shows the corresponding contour plot in color
to facilitate interpretation, with darker shades of blue indicating shorter S and
warmer yellow colors denoting longer S. The narrow confidence bands in the left

Figure 2
Partial effect in the GAMM fit to log-transformed S duration of the activation and

activation diversity of the boundary diphone. In the right plot, deeper shades of blue
indicate shorter acoustic durations and warmer shades of yellow denote longer durations.

The left plot presents contour lines with 1SE confidence bands.
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Relevant partial effects III
▶ Similar looking effects of activation and activation diversity of

remaining cues, but they are modulated by local speaking rate.P H O N E T I C E F F E C T S O F M O R P H O L O G Y

Figure 3
Tensor product smooth for the three-way interaction of ACTFROMREMAININGCUES by
ACTDIVFROMREMAININGCUES by local speaking rate. The regression surface for the
two activation measures is shown for deciles 0.1, 0.3, 0.5, 0.7, and 0.9 of local speaking

rate. Deeper shades of blue indicate shorter acoustic durations and warmer shades of
yellow denote longer durations.

panel indicate that there are real gradients in this regression surface, except for
the upper left corner of the plotting region. For all activation values, we find that
as the activation diversity increases, S duration decreases. Conversely, for most
values of activation diversity, increasing the activation leads to larger S duration.
Shortest S durations are found for larger (but not the largest) values of activation
and for activation diversities exceeding 0.2. The two boundary measures interact
insofar as S duration is strongly reduced for high DIVLASTDIPHONE in spite of
high ACTLASTDIPHONE, as can be seen by the lake-like blue dip in the upper
right quadrant of the plot. While smaller activation – and consequently reduced
support – for the morphological function of S should result in shorter S, it seems
as though greater certainty about the morphological function counterbalances the
trend, resulting in longer S (bottom left quadrant of the plot).

Figure 3 visualizes the three-way interaction of ACTFROMREMAININGCUES
by ACTDIVFROMREMAININGCUES by local speaking rate.9 The successive

[9] Software for plotting confidence bands for these complex interactions is not available.
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Discussion: pressures on duration

▶ Present results and previous literature suggest that opposing
forces weigh on duration of S:
▶ Enhance parts of the signal that support a meaning that is generally

salient (prior).
▶ Enhance parts of the signal that strongly support the intended

meaning (activation).
▶ Downplay parts of the signal that increase uncertainty (high

activation diversity).
▶ The NDL-based model highlights the complex interaction between

these forces.
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Discussion: morphological theory

▶ The authors suggest that the results are more readily compatible
with Word-and-Paradigm approaches to morphology than with
Item and Arrangement approaches.

▶ The intuition seems to be that IA is inherently dependent on the
postulation of discrete subword units, and hence cannot easily
capture the patterns seen here that rely on a representation of
form that ignores traditional morph boundaries.

▶ The authors concede that an IA approach is compatible with
assigning probabilistic properties to morphemes and
arrangements of morphemes, and hence could possibly capture
the effects discussed here: they are just skeptical that this will lead
to good results.
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Discussion: Speech production

▶ The results clearly falsify modular models of speech production
where the signal derives from a discrete phonological
representation only (Dell 1986, Levelt et al. 1999).

▶ The results do not readily combine with the received view that less
informative segments tend to be shorter (e.g. Jurafsky et al. 2001,
Aylett and Turk 2004, Jaeger 2010).
▶ Isn’t that a separate issue? The present model does not look at the

specific support of the previous context for the use of a word.
▶ On the other hand, the results dovetail with the Paradigmatic

Signal Enhancement Hypothesis (Kuperman et al. 2007): the more
probable an exponent within a paradigm, the longer the
articulation.
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Evaluation
▶ Morphophonetic effects are beginning to make sense:

▶ It is possible to read Plag, Homann, and Kunter (2017) as giving an
argument the psychological reality of morphological segmentation:
morphemes have individual phonetic properties.

▶ Here we have a completely different picture: the data actually
supports more a nondecompositional and fully gradient view of
morphological knowledge.

▶ Interesting hypothesis on enhancement of discriminative signal.
▶ NDL as a practical, relatively tractable alternative to the use of

either deep neural networks or explicit probabilistic modelling to
capture the relation between form and meaning.

▶ The study raises at least as many questions as it answers:
▶ Relationship between Prior, frequency, and duration?
▶ Exact outcome structure and coding?

▶ e.g. why {DOG DOGS PLURAL} rather than just {DOG PLURAL}?
▶ Effect of cue structure and coding?

▶ e.g. why diphones rather than triphones?
▶ More generally, this is innovative in so many dimensions at once that

it is hard to tell which are the usegul innovations.
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