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The general idea
▶ In Naive Discriminative Learning models of morphology:

▶ Both the cues and the outcomes can be seen as vectors of indicator
variables: each cue/outcome is either present (1) or absent (0).

▶ n-phones as cues capture form similarity, but lexomes as outcomes
do not capture similarity of meaning.

Cues: diphones · · · c1 c2 c3 c4 c5 · · ·

Outcomes: lexomes · · · o1 o2 o3 · · ·

▶ Basic idea of LDL: replace lexomes by distributional vectors.
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Morphology as linear algebra I

▶ Lexical phonological information as a matrix of triphone indicators

C =

#wV wVn Vn# #tu tu# #Tr Tri ri#( )one 1 1 1 0 0 0 0 0
two 0 0 0 1 1 0 0 0
three 0 0 0 0 0 1 1 1

▶ Semantic information as a matrix of cooccurrence vectors

S =

one two three( )one 1.0 0.3 0.4
two 0.2 1.0 0.1
three 0.1 0.1 1.0
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Morphology as linear algebra II
▶ Word comprehension is a matter of mapping correctly from C to S

#wV wVn Vn# #tu tu# #Tr Tri ri#( )1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

F
=⇒

one two three( )1.0 0.3 0.4
0.2 1.0 0.1
0.1 0.1 1.0

▶ Word production is a matter of mapping correctly from  S to C
(and then have some algorithm to reconstruct forms from trigrams)

one two three( )1.0 0.3 0.4
0.2 1.0 0.1
0.1 0.1 1.0

G
=⇒

#wV wVn Vn# #tu tu# #Tr Tri ri#( )1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

▶ Linearity assumption: a linear mapping will do.
▶ This is why the approach is called LDL: the lexicon is modeled by

linear transformations between vectors.
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Morphology as linear algebra III
▶ Mathematically, we want to find matrices F and G such that

CF ≈ S (or SG ≈ C)

▶ The Moore-Penrose generalized inverse provides exactly that: a
least-squares linear approximation of a function mapping one
matrix to another.

F = C′S (likewise G = S′C)

▶ Note that F and G represent the outcome of discriminative learning.

▶ The authors discuss in passing the fact that such mappings can be
learned using the Rescorla-Wagner rule, but they neither
demonstrate it mathematically (in this paper) nor discuss
psycholinguistic applications involving actual learning.
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Deriving semantic vectors
▶ Instead of using an off-the-shelf algorithm, the authors decided to

derive word vectors using the NDL algorithm.
▶ The same list of words is used as the cues and outcomes
▶ A learning event is a sentence in the corpus.
▶ Each word in the sentence counts as a cue to each word in the

sentence
That is, at each sentence
▶ The weights from words in the sentence to words in the sentence are

upgraded
▶ The weights from words in the sentence to words not in the sentence

are downgraded

Cues: lexomes · · · the dog barks · · ·

Outcomes: lexomes · · · a the dog barks cat · · ·

▶ The result is a very large n × n matrix of weights, that ought to be
strongly correlated to a matrix of cooccurrence counts.
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Semantic vectors: lexomes
▶ Morphological analysis embedded in the lexomes (derived from

TreeTagger + CELEX):
▶ Morphologically simplex words contribute a single lexome.

▶ dog { DOG
▶ Nonsimplex inflected forms contribute one lexome for the stem +

one or more lexome for inflectional categories:
▶ dogs { DOG, PL

NB: no lexome for SG
▶ Nonsimplex derived forms contribute one lexome for the derived

lexeme + one lexome for the derivational category (+ lexomes for
inflectional categories)
▶ bakers { BAKER, AGENT, PL

NB: no lexome for base
▶ The inventory of inflectional lexomes is clearly motivated by content,

e.g. there is a single PAST lexome. The inventory of derivational
lexomes is a mixed bag: e.g. separate lexomes for AGENT and
INSTRUMENT, but also separate lexomes for ITY and NESS

▶ Note the absence of structured semantics: sentences the cats
chased the rat, the rat chased the cats, the cat chased the rats have
identical effects on the vector space.
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The semantic vector space
▶ Vectors derived from the TESA corpus: 750k sentences, 10M tokens,

23,562 lexomes retained for analysis (frequency >8)
▶ All evaluations rely on the Pearson correlation between vectors as

a measure of similarity.
▶ In principle, a value between −1 and 1 where:

1. The absolute value indicates how close we are to a linear relation
between the dimensions of the two vectors.

2. The sign indicates the direction of the slope.
▶ In practice, all values are negative⇒ the lower the number, the more

similar the vectors.
▶ No explanation as to why they use this rather than cosine or

Euclidian distance
▶ Matrix diagonal has highest values, unsurprisingly. For some but

not all applications the diagonal values are set to 0.
▶ All models use a truncated semantic vector matrix, where columns

with low variance have been eliminated (≈ 4000 retained columns,
varying across models)
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Semantic vectors: evaluation I

1. Paired associate learning
▶ Psycholinguistic task where participants have to memorize pairs of

word and are evaluated on recall of the association.
▶ Performance on this task is known to decrease with age.
▶ In a linear model, interaction between age and semantic similarity of

vectors: the slope of the effect of correlation between the two
vectors increases with age.
▶ Since correlation is negative, this means that the boost of performance

given by semantic similarity in recalling associate decreases with age.
▶ Suggests that the vectors do capture something psychologically

relevant about similarity between words.
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Semantic vectors: evaluation II
2. Semantic relatedness ratings

▶ Interesting relationship between correlation r and similarity ratings
in the MEN dataset (Bruni, Tran & Baroni 2014).8 Complexity

predictor of that sameword occurring in that sentence.When
the focus is on semantic similarity, it is useful to set the main
diagonal of this matrix to zero. However, for more general
association strengths between words, the diagonal elements
are informative and should be retained.

Unlike standard models of distributional semantics, we
did not carry out any dimension reduction, using, for
instance, singular value decomposition. Because we do not
work with latent variables, each dimension of our semantic
space is given by a column vector of S, and hence each
dimension is linked to a speci"c lexome.#us, the rowvectors
of S specify, for each of the lexomes, how well this lexome
discriminates between all the lexomes known to the model.

Although semantic vectors of length 23,562 can provide
good results, vectors of this length can be challenging for
statistical evaluation. Fortunately, it turns out that many of
the column vectors of S are characterized by extremely small
variance. Such columns can be removed from the matrix
without loss of accuracy. In practice, we have found it su(ces
toworkwith approximately 4 to 5 thousand columns, selected
calculating column variances and using only those columns
with a variance exceeding a threshold value.

3.2. Validation of the Semantic Vector Space. As shown by
Baayen et al. [59] and Milin et al. [58, 77], measures based
on matrices such as S are predictive for behavioral measures
such as reaction times in the visual lexical decision task,
as well as for self-paced reading latencies. In what follows,
we "rst validate the semantic vectors of S on two data sets,
one data set with accuracies in paired associate learning,
and one dataset with semantic similarity ratings. We then
considered speci"cally the validity of semantic vectors for
in,ectional and derivational functions, by focusing "rst on
the correlational structure of the pertinent semantic vectors,
followed by an examination of the predictivity of the semantic
vectors for semantic plausibility and semantic transparency
ratings for derived words.

3.2.1. PairedAssociate Learning. #e paired associate learning
(PAL) task is a widely used test in psychology for evaluating
learning and memory. Participants are given a list of word
pairs tomemorize. Subsequently, at testing, they are given the
"rst word and have to recall the second word.#e proportion
of correctly recalled words is the accuracy measure on the
PAL task. Accuracy on the PAL test decreases with age, which
has been attributed to cognitive decline over the lifetime.
However, Ramscar et al. [78] and Ramscar et al. [79] provide
evidence that the test actually measures the accumulation
of lexical knowledge. In what follows, we use the data on
PAL performance reported by desRosiers and Ivison [80].
We "tted a linear mixed model to accuracy in the PAL task
as a function of the Pearson correlation ! of paired words’
semantic vectors in S (but with weights on the main diagonal
included and using the 4275 columns with highest variance),
with random intercepts for word pairs, sex and age as control
variables and crucially, an interaction of ! by age. Given the
"ndings of Ramscar and colleagues, we expect to "nd that the
slope of ! (which is always negative) as a predictor of PAL
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Figure 1: Similarity rating in the MEN dataset as a function of the
correlation ! between the row vectors in S of the words in the test
pairs.

accuracy increases with age (indicating decreasing accuracy).
Table 1 shows that this prediction is born out. For age group
20–29 (the reference level of age), the slope for ! is estimated
at 0.31. For the next age level, this slope is adjusted upward by
0.12, and as age increases these upward adjustments likewise
increase to 0.21, 0.24, and 0.32 for age groups 40–49, 50-
59, and 60-69, respectively. Older participants know their
language better and hence are more sensitive to the semantic
similarity (or lack thereof) of thewords thatmake up PAL test
pairs. For the purposes of the present study, the solid support
for ! as a predictor for PAL accuracy contributes to validating
the row vectors of S as semantic vectors.

3.2.2. Semantic Relatedness Ratings. We also examined per-
formance of S on the MEN test collection [81] that provides
for 3000 word pairs crowd sourced ratings of semantic
similarity. For 2267word pairs, semantic vectors are available
in S for both words. Figure 1 shows that there is a nonlinear
relation between the correlation of words’ semantic vectors
in S and the ratings. #e plot shows as well that for low
correlations, the variability in the MEN ratings is larger. We
"tted a Gaussian location scale additive model to this data
set, summarized in Table 2, which supported ! as a predictor
for both mean MEN rating and the variability in the MEN
ratings.

To put this performance in perspective, we
collected the latent semantic analysis (LSA) similarity
scores for the MEN word pairs using the website at
http://lsa.colorado.edu/. #e Spearman correlation
for LSA scores andMEN ratings was 0.697, and that for ! was
0.704 (both " < 0.0001).#us, our semantic vectors perform
on a par with those of LSA, a well-established older technique
that still enjoys wide use in psycholinguistics. Undoubtedly,
optimized techniques from computational linguistics such as
word2vec will outperform our model. #e important point
here is that even with training on full sentences rather than
using small windows and even when including function

▶ Spearman correlation between MEN scores and r between NDL
vectors is 0.704.

▶ This is slightly better than correlation with LSA scores (0.697).
…but this is much worse than even the 2014 state of the art (Baroni
et al. 2014), which was at about 0.78
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Semantic vectors: evaluation III
3. Correlational structure of morphological vectors

10 Complexity
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Figure 2: Heatmap for the correlation matrix of the row vectors in S of derivational and in)ectional function lexomes (individual words will
become legible by zooming in on the *gure at maximal magni*cation.).

10 permutations 0.519–0.537). From this, we conclude that
derived words show more clustering in the semantic space of
S than can be expected under randomness.

How are the semantic vectors of derivational lexomes
positioned with respect to the clusters of their derived words?
To address this question, we constructed heatmaps for the
correlation matrices of the pertinent semantic vectors. An
example of such a heatmap is presented for ness in Figure 3.
Apart from the existence of clusters within the cluster of ness
content lexomes, it is striking that the ness lexome itself is
found at the very le1 edge of the dendrogram and at the very

le1 column and bottom row of the heatmap.2e color coding
indicates that surprisingly the ness derivational lexome is
negatively correlated with almost all content lexomes that
have ness as formative. 2us, the semantic vector of ness
is not a prototype at the center of its cloud of exemplars,
but an antiprototype. 2is vector is close to the cloud of
semantic vectors, but it is outside its periphery. 2is pattern
is not speci*c to ness but is found for the other derivational
lexomes as well. It is intrinsic to our model.

2e reason for this is straightforward. During learning,
although for a derived word’s lexome ! and its derivational
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Figure 2: Heatmap for the correlation matrix of the row vectors in S of derivational and in)ectional function lexomes (individual words will
become legible by zooming in on the *gure at maximal magni*cation.).

10 permutations 0.519–0.537). From this, we conclude that
derived words show more clustering in the semantic space of
S than can be expected under randomness.

How are the semantic vectors of derivational lexomes
positioned with respect to the clusters of their derived words?
To address this question, we constructed heatmaps for the
correlation matrices of the pertinent semantic vectors. An
example of such a heatmap is presented for ness in Figure 3.
Apart from the existence of clusters within the cluster of ness
content lexomes, it is striking that the ness lexome itself is
found at the very le1 edge of the dendrogram and at the very

le1 column and bottom row of the heatmap.2e color coding
indicates that surprisingly the ness derivational lexome is
negatively correlated with almost all content lexomes that
have ness as formative. 2us, the semantic vector of ness
is not a prototype at the center of its cloud of exemplars,
but an antiprototype. 2is vector is close to the cloud of
semantic vectors, but it is outside its periphery. 2is pattern
is not speci*c to ness but is found for the other derivational
lexomes as well. It is intrinsic to our model.

2e reason for this is straightforward. During learning,
although for a derived word’s lexome ! and its derivational

▶ This feels very close to chance, despite author’s optimism.
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Semantic vectors: evaluation IV

▶ The categories shown do not match those described in the paper!
▶ Inflectional categories listed in the text:

COMPARATIVE, SUPERLATIVE, SINGULAR, PLURAL, PAST, PERFECTIVE,
CONTINUOUS, PERSISTENCE, PERSON3

▶ Derivational categories listed in the text:
ORDINAL, NOT, UNDO, OTHER, EE, AGENT, INSTRUMENT, IMPAGENT, CAUSER,
AGAIN, NESS, ITY, ISM, IST, IC, ABLE, IVE, OUS, IZE, ENCE, FUL, ISH, UNDER, SUB,
SELF, OVER, OUT, MIS, DIS

▶ Categories present in the heatmap but not described in the text:
CAN, FUTURE, GEN, ION, LESS, LY, MENT, OUGHT, PASSIVE, PERSON1, PRESENT,
SG, SHALL, Y

▶ Categories described in the text but not present in the heatmap:
IMPAGENT, OTHER
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Semantic vectors: evaluation V
Interestingly, the category vectors are very different from the
vectors for members of the category. E.g. with NESS:
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Figure 3: Heatmap for the correlation matrix of lexomes for content words with ness, as well as the derivational lexome of ness itself. *is
lexome is found at the very le+ edge of the dendrograms, and is negatively correlated with almost all content lexomes (Individual words will
become legible by zooming in on the ,gure at maximal magni,cation.).

lexome ness are co-present cues, the derivational lexome
occurs in many other words !, and each time another
word ! is encountered, weights are reduced from ness to". As this happens for all content lexomes, the derivational
lexome is, during learning, slowly but steadily discriminated
away from its content lexomes. We shall see that this is an
important property for our model to capture morphological
productivity for comprehension and speech production.

When the additive model of Mitchell and Lapata [67]
is used to construct a semantic vector for ness; i.e., when

the average vector is computed for the vectors obtained by
subtracting the vector of the derived word from that of the
base word, the result is a vector that is embedded inside
the cluster of derived vectors, and hence inherits semantic
idiosyncracies from all these derived words.

3.2.4. Semantic Plausibility and Transparency Ratings for
Derived Words. In order to obtain further evidence for the
validity of in/ectional and derivational lexomes, we re-
analyzed the semantic plausibility judgements for word pairs
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NESS
sleeplessness
assertiveness
directness
soundness
bigness
permissiveness
appropriateness
promptness
shrewdness
weakness
darkness
wilderness
blackness
goodness
kindness
loneliness
forgiveness
stillness
consciousness
happiness
sickness
awareness
blindness
brightness
wildness
madness
greatness
so!ness
thickness
tenderness
bitterness
e"ectiveness
hardness
emptiness
willingness
foolishness
eagerness
neatness
politeness
freshness
highness
nervousness
wetness
uneasiness
loudness
coolness
idleness
dryness
blueness
dampness
fondness
likeness
cleanliness
sadness
sweetness
readiness
cleverness
nothingness
coldness
unhappiness
seriousness
alertness
lightness
ugliness
#atness
aggressiveness
self−consciousness
ruthlessness
quietness
vagueness
shortness
business
holiness
openness
%tness
cheerfulness
earnestness
righteousness
unpleasantness
quickness
correctness
distinctiveness
unconsciousness
%erceness
orderliness
whiteness
tallness
heaviness
wickedness
toughness
lawlessness
laziness
numbness
soreness
togetherness
responsiveness
clearness
nearness
deafness
illness
dizziness
sel%shness
fatness
restlessness
shyness
richness
thoroughness
carelessness
tiredness
fairness
weariness
tightness
gentleness
uniqueness
friendliness
vastness
completeness
thankfulness
slowness
drunkenness
wretchedness
frankness
exactness
helplessness
attractiveness
fullness
roughness
meanness
hopelessness
drowsiness
sti"ness
closeness
gladness
usefulness
%rmness
rudeness
boldness
sharpness
dullness
weightlessness
strangeness
smoothness
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Figure 3: Heatmap for the correlation matrix of lexomes for content words with ness, as well as the derivational lexome of ness itself. *is
lexome is found at the very le+ edge of the dendrograms, and is negatively correlated with almost all content lexomes (Individual words will
become legible by zooming in on the ,gure at maximal magni,cation.).

lexome ness are co-present cues, the derivational lexome
occurs in many other words !, and each time another
word ! is encountered, weights are reduced from ness to". As this happens for all content lexomes, the derivational
lexome is, during learning, slowly but steadily discriminated
away from its content lexomes. We shall see that this is an
important property for our model to capture morphological
productivity for comprehension and speech production.

When the additive model of Mitchell and Lapata [67]
is used to construct a semantic vector for ness; i.e., when

the average vector is computed for the vectors obtained by
subtracting the vector of the derived word from that of the
base word, the result is a vector that is embedded inside
the cluster of derived vectors, and hence inherits semantic
idiosyncracies from all these derived words.

3.2.4. Semantic Plausibility and Transparency Ratings for
Derived Words. In order to obtain further evidence for the
validity of in/ectional and derivational lexomes, we re-
analyzed the semantic plausibility judgements for word pairs

▶ It is clear why this happens: the weight from NESS to any derivative is
downgraded every time a different -ness derivative is encountered.

▶ The authors make a cryptic point implying that this is a good thing.

12



Semantic vectors: evaluation VI
4. Semantic plausibility

▶ Evaluation against human
judgements of semantic
plausibility for nonce derivatives
from Marelli and Baroni (2015).

▶ A GAMM showed that word length
and activation diversity of the
derivational lexome interact in
predicting plausibility ratings.

▶ Remember that activation
diversity measures how strongly a
cue distriminates among
outcomes.

▶ There are only 6 possible values
for activation diversity as there
are 6 processes in the dataset.
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Figure 4: Interaction of word length by activation diversity in GAMs )tted to plausibility ratings for complex words (le*) and to semantic
transparency ratings (right).

Table 3: GAM )tted to plausibility ratings for derivational neologisms with the derivational lexomes able, again, agent, ist, less, and not;
data fromMarelli and Baroni [60].

A. parametric coe4cients Estimate Std. Error t-value p-value
Intercept -1.8072 2.7560 -0.6557 0.5127
Word Length 0.5901 0.2113 2.7931 0.0057
Activation Diversity 1.1221 0.6747 1.6632 0.0976
Arousal 0.3847 0.1521 2.5295 0.0121
Word Length × Activation Diversity -0.1318 0.0500 -2.6369 0.0089
B. smooth terms edf Ref.df F-value p-value
Random Intercepts A4x 3.3610 4.0000 55.6723 < 0.0001

of the following matrix S:

S = one two three
one
two
three

( 1.00.20.1
0.31.00.1

0.40.11.0 ) . (13)

We are interested in a transformation matrix $ such that

CF = S. (14)

:e transformation matrix is straightforward to obtain. Let
C! denote the Moore-Penrose generalized inverse of C,
available in R as the ginv function in theMASS package [82].
:en

F = C!S. (15)

For the present example,

F =
one two three

#wV
wVn
Vn#
#tu
tu#
#Tr
Tri
ri#

(((((((((((
(

0.330.330.330.100.100.030.030.03

0.100.100.100.500.500.030.030.03

0.130.130.130.050.050.330.330.33

)))))))))))
)

, (16)

and for this simple example, CF is exactly equal to S.
In the remainder of this section, we investigate how well

this very simple end-to-end model performs for visual word
recognition as well as auditory word recognition. For visual
word recognition, we use the semantic matrix S developed in
Section 3, but we consider two di;erent cue matrices C, one
using letter trigrams (following [58]) and one using phone
trigrams.A comparison of the performance of the twomodels

13



Semantic vectors: evaluation VII
▶ Impressionistic examination of

correlation between base and
derivative suggests reasonable
results.

▶ Evaluation against human
judgements of semantic
transparency for nonce
derivatives from Lazaridou et al.
(2016).

▶ Again, a GAMM showed that word
length and activation diversity of
the derivational lexome interact
in predicting plausibility ratings.

▶ Note that (at this point) the
authors do not have a method to
derive a predicted vector for a
nonce word, hence the rather
coarse-grained evaluation.
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Figure 4: Interaction of word length by activation diversity in GAMs )tted to plausibility ratings for complex words (le*) and to semantic
transparency ratings (right).

Table 3: GAM )tted to plausibility ratings for derivational neologisms with the derivational lexomes able, again, agent, ist, less, and not;
data fromMarelli and Baroni [60].

A. parametric coe4cients Estimate Std. Error t-value p-value
Intercept -1.8072 2.7560 -0.6557 0.5127
Word Length 0.5901 0.2113 2.7931 0.0057
Activation Diversity 1.1221 0.6747 1.6632 0.0976
Arousal 0.3847 0.1521 2.5295 0.0121
Word Length × Activation Diversity -0.1318 0.0500 -2.6369 0.0089
B. smooth terms edf Ref.df F-value p-value
Random Intercepts A4x 3.3610 4.0000 55.6723 < 0.0001

of the following matrix S:

S = one two three
one
two
three

( 1.00.20.1
0.31.00.1

0.40.11.0 ) . (13)

We are interested in a transformation matrix $ such that

CF = S. (14)

:e transformation matrix is straightforward to obtain. Let
C! denote the Moore-Penrose generalized inverse of C,
available in R as the ginv function in theMASS package [82].
:en

F = C!S. (15)

For the present example,

F =
one two three

#wV
wVn
Vn#
#tu
tu#
#Tr
Tri
ri#

(((((((((((
(

0.330.330.330.100.100.030.030.03

0.100.100.100.500.500.030.030.03

0.130.130.130.050.050.330.330.33

)))))))))))
)

, (16)

and for this simple example, CF is exactly equal to S.
In the remainder of this section, we investigate how well

this very simple end-to-end model performs for visual word
recognition as well as auditory word recognition. For visual
word recognition, we use the semantic matrix S developed in
Section 3, but we consider two di;erent cue matrices C, one
using letter trigrams (following [58]) and one using phone
trigrams.A comparison of the performance of the twomodels

▶ Overall, these vectors are not very impressive.
▶ In addition it is unclear why the authors do so many nonstandard

things instead of more standard ones: unusual corpus, unusual
method for deriving vectors, unusual similarity metric, unusual
evaluation metrics…

▶ …but all this was just the first step! Now we need to relate
semantic vectors to form vectors.

14



Comprehension

▶ Remember: LDL gives us a weight matrix approximating the
relationship between form vectors and semantic vectors.

▶ The authors use this in 4 different ways:
1. Trigraphs to vectors.
2. Triphones to vectors.
3. Trigraphs to triphones to vectors.
4. Acoustic features of actual speech to vectors.

▶ Semantic vectors for inflected forms inferred by summing the stem
and inflectional lexome vectors.

15



Comprehension from orthography alone I

▶ LDL finds F such that:
#on one ne# #tw two# wo# #th thr hre ree ee#( )1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1

⇓ F

one two three( )1.0 0.3 0.4
0.2 1.0 0.1
0.1 0.1 1.0

16



Comprehension from orthography alone II
▶ Accuracy: proportion of cases where the closest actual vector to a

predicted vector is the correct one.
▶ Accuracy on the training set is 59% (compare 27% with NDL)

▶ Assessment of inflectional productivity: proportion of cases where
the predicted vector for an unseen inflected form is closer to the
sum of stem and inflectional lexome vectors than to any of the
actual vectors.
▶ Accuracy is 43% on 553 test items

▶ The same setup just does not work for derivation: no correlation
between predicted vectors and summed stem+derivational
category vector.
▶ Unsurprising given prior observations on the derivational category

vectors.
▶ The authors strangely try to argue that this is due to semantic

idiosyncrasies in derivation, when they previously established that it
is a consequence of their setup.
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Comprehension from triphones

▶ This is the setup I originally described. Find F such that:
#wV wVn Vn# #tu tu# #Tr Tri ri#( )1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⇓ F

one two three( )1.0 0.3 0.4
0.2 1.0 0.1
0.1 0.1 1.0

▶ Strong boost to accuracy on training data: 78%
▶ Compare 59% with trigraphs

18



Comprehension from speech signal

▶ We start from a pairing of words with acoustic recordings from the
UCLA Library broadcast newsscape.

▶ From these are derived Frequency Band Summary Features for each
token of a word.

▶ Result: matrix Ca of 131,673 audio tokens × 40,639 FBSFs.
▶ This is put in relation with an expanded semantic matrix where

each token of the same type is given an identical row vector.
▶ Matrix F linking the two computed as before, with some

complications due to larger matrix size.
▶ Accuracy evaluated as before: success if actual vector is most

highly correlated with predicted vector.
▶ Result: 34%

▶ Compare: 12% with NDL, 6% with Mozilla DeepSpeech.
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Production

one two three( )1.0 0.3 0.4
0.2 1.0 0.1
0.1 0.1 1.0

⇓ G
#wV wVn Vn# #tu tu# #Tr Tri ri#( )1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⇓
Candidate forms deduced
from connected sequences
of high activation triphones

20



Production performance: monolexomic words I
▶ Evaluation method 1:

1. From a semantic vector use G to obtain a vector of triphone
activation weights.

2. Retain triphones with activation > 0.99.
3. Construct a directed graph with triphones as vertices and edges

between triphones that can be in sequence.
#wV wVn Vn#

4. Find the longest simple path (with no repeated triphones) in this
graph and deduce a sequence.

#wV wVn Vn# ⇒ #wVn#

This led to 100% accuracy!
▶ Problem: this will not work well on novel words, which may contain

triphones unseen (or rare) in training, and that will hence never
reach the 99% threshold.
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Production performance: monolexomic words II

▶ Evaluation method 2:
1. Construct a graph with the triphones that are “best supported” by

the input vectors (with a complicated definition of “best supported”)
2. Consider all paths from an initial to a final triphone in this graph.

Accuracy 99, 9%, all 5 errors being cases where the correct path is
not the shortest path whith these triphones.

#in int

nt#

nte ent
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Production performance: inflected words

▶ Vectors for inflected words computed by adding stem vector and
inflectional function vector.

▶ Production accuracy of 92%
▶ An unknown portion of this is due to inconsistent coding of variation

in CELEX.
▶ 10 fold cross-validation, with training on all stems and 90% of

inflected forms.
▶ Accuracy 62%.
▶ (???) In 3% of cases the correct form is not even a candidate.
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Production performance: derived words

▶ Starting from the derived word semantic vectors: 99% accuracy.
▶ Starting from the base vector + derivational category vector: 98.9%

accuracy.
▶ In cross validation, accuracy of 75%
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Production: discussion

▶ The production results are surprisingly good.
▶ Small corpus
▶ Many prediction errors are due to inconsistencies in CELEX
▶ Many prediction errors resemble human speech errors

▶ Outstanding memorization of existing forms, without any listing of
signs.

▶ The model is in effect dual route: attempts at building a single
route network were unsuccessful.
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General discussion
28 Complexity

typing speaking

orthographic targets

trigrams

auditory targets

triphones

semantic vectors

TASA

auditory cues

FBS features

orthographic cues

trigrams

cochlea retina

To Ta
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Go Ga

KaS

Fa Fo
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Figure 11: Overview of the discriminative lexicon. Input and output systems are presented in light gray, the representations of the model are
shown in dark gray. Each of these representations is a matrix with its own set of features. Arcs are labeled with the discriminative networks
(transformationmatrices) thatmapmatrices onto each other.)e arc from semantic vectors to orthographic vectors is in gray, as thismapping
is not explored in the present study.

in Baayen et al. [85]. In their production model for Latin
in+ection, feedback from the projected triphone paths back
to the semantics (synthesis by analysis) is allowed, so that
of otherwise equally well-supported paths, the path that best
expresses the targeted semantics is selected. For information
+ows between systems in speech production, see Hickok
[147].). In what follows, we touch upon a series of issues that
are relevant for evaluating our model.

Incremental learning. In the present study, we esti-
mated the weights on the connections of these networks
with matrix operations, but, importantly, these weights can
also be estimated incrementally, using the learning rule of
Widrow and Ho. [44]; further improvements in accuracy
are expected when using the Kalman /lter [151]. As all
matrices can be updated incrementally (and this holds as
well for the matrix with semantic vectors, which are also
time-variant) and in theory should be updated incrementally

whenever information about the order of learning events is
available, the present theory has potential for studying lexical
acquisition and the continuing development of the lexicon
over the lifetime [79].

Morphology without compositional operations. We
have shown that our networks are predictive for a range
of experimental /ndings. Important from the perspective of
discriminative linguistics is that there are no compositional
operations in the sense of Frege and Russell [1, 2, 152]. )e
work on compositionality in logic has deeply in+uenced
formal linguistics (e.g., [3, 153]), and has led to the belief
that the “architecture of the language faculty” is grounded
in a homomorphism between a calculus (or algebra) of
syntactic representations and a calculus (or algebra) based on
semantic primitives. Within this tradition, compositionality
arises when rules combining representations of form are
matched with rules combining representations of meaning.
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General discussion

▶ Entirely compatible with incremental learning
▶ Morphology without compositional operations
▶ Improves on NDL by taking into account semantic similarity
▶ Scalable: works relatively well with a small corpus
▶ Not an exemplar-based theory: no explicit representation of

exemplars
▶ Much less complex than deep learning models: no hidden layer.
▶ Network flexibility: little new data is needed to learn a new pattern
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Evaluation

▶ One super neat new idea: morphology as mapping between
vectors.

▶ Many problems with execution
▶ Reporting problems, esp. for the semantic vectors evaluation.
▶ Lack of comparison to the relevant state of the art.
▶ Incoherence in evaluations (or reporting on how they were chose)
▶ Some conceptual problems

▶ Notion of ‘monolexomic word’: how is that Word and Paradigm
morphology?

▶ Divide between inflection and derivation
▶ ‘antiprototypical’ category vectors

▶ So many moving parts…wouldn’t we learn a lot more from focusing
on just one new idea rather than trying to defend 10 at the same
time?
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