
DRAFT

Incremental Discontinuous Phrase Structure Parsing with the GAP
Transition

Maximin Coavoux1,2 and Benoı̂t Crabbé1,2,3
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Abstract

This article introduces a novel transition
system for discontinuous lexicalized con-
stituent parsing called SR-GAP. It is an ex-
tension of the shift-reduce algorithm with
an additional gap transition. Evaluation on
two German treebanks shows that SR-GAP

outperforms the previous best transition-
based discontinuous parser (Maier, 2015)
by a large margin (it is notably twice as ac-
curate on the prediction of discontinuous
constituents), and is competitive with the
state of the art (Fernández-González and
Martins, 2015). As a side contribution, we
adapt span features (Hall et al., 2014) to
discontinuous parsing.

1 Introduction

Discontinuous constituent trees can be used to
model directly certain specific linguistic phenom-
ena, such as extraposition, or more broadly to de-
scribe languages with some degree of word-order
freedom. Although these phenomena are some-
times annotated with indexed traces in CFG tree-
banks, other constituent treebanks are natively an-
notated with discontinuous constituents, e.g. the
Tiger corpus (Brants, 1998).

From a parsing point of view, discontinuities
pose a challenge. Mildly context-sensitive for-
malisms, that are expressive enough to model dis-
continuities have high parsing complexity. For ex-
ample, the CKY algorithm for a binary probabilis-
tic LCFRS is in O(n3k), where k is the fan-out of
the grammar (Kallmeyer, 2010).

Recently, there have been several proposals for
direct discontinuous parsing. They correspond
roughly to three different parsing paradigms. (i)
Chart parsers are based on probabilistic LCFRS
(Kallmeyer and Maier, 2013; Maier, 2010; Evang
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Figure 1: Discontinuous tree extracted from the
Tiger corpus (punctuation removed).

and Kallmeyer, 2011), or on the Data-Oriented
Parsing (DOP) framework (van Cranenburgh,
2012; van Cranenburgh and Bod, 2013; van Cra-
nenburgh et al., 2016). However, the complex-
ity of inference in this paradigm requires to de-
sign elaborate search strategies and heuristics to
make parsing run-times reasonable. (ii) Several
approaches are based on modified non-projective
dependency parsers, for example Hall and Nivre
(2008), or more recently Fernández-González and
Martins (2015) who provided a surprisingly ac-
curate parsing method that can profit from effi-
cient dependency parsers with rich features. (iii)
Transition-based discontinuous parsers are based
on the easy-first framework (Versley, 2014a) or the
shift-reduce algorithm augmented with a swap ac-
tion (Maier, 2015). In the latter system, which we
will refer to as SR-SWAP, a SWAP action pushes
the second element of the stack back onto the
buffer.

Although SR-SWAP is fast and obtained good
results, it underperforms Fernández-González and
Martins (2015)’s parser by a large margin. We be-
lieve this result does not indicate a fatal problem
for the transition-based framework for discontin-
uous parsing, but emphasizes several limitations
inherent to SR-SWAP, in particular the length of
derivations (Section 3.5).
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Figure 2: Lexicalized binarized tree. The symbol
‘*’ encodes head information. Symbols suffixed
by ‘:’ are temporary symbols introduced by the
binarization.

Contributions We introduce a novel transition
system for discontinuous parsing we call SR-GAP.
We evaluate this algorithm on two German tree-
banks annotated with discontinuous constituents,
and show that, in the same experimental settings,
it outperforms the previous best transition-based
parser of Maier (2015), and matches the best
published results on these datasets (Fernández-
González and Martins, 2015). We provide a theo-
retical and empirical comparison between SR-GAP

and SR-SWAP. Finally we adapt span-based fea-
tures to discontinuous parsing.

The code and preprocessing scripts to repro-
duce experiments are available for download at
https://github.com/mcoavoux/mtg.

2 Discontinuous Shift-Reduce Parsing

In this section we present SR-GAP, a transition
system for discontinuous constituent parsing. SR-
GAP is an extension of the shift-reduce system. In
what follows, we assume that part-of-speech tags
for the words of a sentence are given. A terminal
refers to a tag-word couple.

2.1 Standard Shift-Reduce Constituent
Parsing

The shift-reduce system is based on two data struc-
tures. The stack (S) contains tree fragments repre-
senting partial hypotheses and the buffer (B) con-
tains the remaining terminals. A parsing configu-
ration is a couple 〈S,B〉. Initially, B contains the
sentence as a list of terminals and S is empty.

The three types of actions are defined as fol-
lows.

• SHIFT(〈S,w|B〉) = 〈S|w,B〉
• REDUCE-X(〈S|A1|A2, B〉) = 〈S|X,B〉

• REDUCEUNARY-X(〈S|A,B〉) = 〈S|X,B〉

where X is any non-terminal in the grammar. The
analysis terminates when the buffer is empty and
the only symbol in the stack is an axiom of the
grammar. This transition system can predict any
labelled constituent tree over a set of non-terminal
symbols N .

These three action types can only produce bi-
nary trees. In practice, shift-reduce parsers often
assume that their data are binary. In this article,
we assume that trees are binary, that each node X
is annotated with a head h (notation: X[h]), and
that the only unary nodes are parents to a terminal.
Therefore, we only need unary reductions immedi-
ately after a SHIFT. We refer the reader to Section
3.1 for the description of the preprocessing opera-
tions.

2.2 SR-GAP Transition System

In order to handle discontinuous constituents, we
need an algorithm expressive enough to predict
non-projective trees.

Compared to the standard shift-reduce algo-
rithm, the main intuition behind SR-GAP is that re-
ductions do not always apply to the two top-most
elements in the stack. Instead, the left element of a
reduction can be any element in the stack and must
be chosen dynamically.

To control the choice of the symbols to which
a reduction applies, the usual stack is split into
two data structures. A deque D represents its top
and a stack S represents its bottom. Alternatively,
we could see these two data structures as a sin-
gle stack with two pointers indicating its top and a
split point. The respective top-most element of D
and S are those available for a reduction.

The transition system is given as a deductive
system in Figure 3. A REDUCE-X action pops the
top element of S and the top element ofD, flushes
the content of D to S and finally pushes a new
non-terminal X on D. As feature extraction (Sec-
tion 3.1) relies on the lexical elements, we use two
types of binary reductions, left and right, to assign
heads to new constituents. Unary reductions re-
place the top of D by a new non-terminal.

The SHIFT action flushes D to S, pops the next
token from B and pushes it onto D.

Finally, the GAP action pops the first element
of S and appends it at the bottom of D. This ac-
tion enables elements below the top of S to be also
available for a reduction with the top of D.
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Input t1[w1]t2[w2] . . . tn[wn]

Axiom 〈ε, ε, t1[w1]t2[w2] . . . tn[wn]〉

Goal 〈ε, S[w], ε〉

SH
〈S,D, t[w]|B〉
〈S|D, t[w], B〉

RU(X)
〈S, d0[h], B〉
〈S,X[h], B〉

RR(X)
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h′], B〉

RL(X)
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h], B〉

GAP
〈S|s0[h], D,B〉
〈S, s0[h]|D,B〉

Figure 3: SR-GAP transition system for discontin-
uous phrase structure parsing. X[h] denotes a non-
terminal X and its head h. s0 and d0 denote the
top-most elements of respectively S and D.

Constraints In principle, a tree can be derived
by several distinct sequences of actions. If a
SHIFT follows a sequence of GAPS, the GAPS will
have no effect, because SHIFT flushes D to S be-
fore pushing a new terminal toD. In order to avoid
useless GAPS, we do not allow a SHIFT to follow
a GAP. A GAP must be followed by either another
GAP or a binary reduction.

Moreover, as we assume that preprocessed trees
do not contain unary nodes, except possibly above
the terminal level, unary reductions are only al-
lowed immediately after a SHIFT. Other con-
straints on the transition system are straightfor-
ward, we refer the reader to Table 7 of Appendix
A for the complete list.

2.3 Oracle and Properties

Preliminary Definitions Following Maier and
Lichte (2016), we define a discontinuous tree as
a rooted connected directed acyclic graph T =
(V,E, r) where

• V is a set of nodes;
• r ∈ V is the root node;
• E : V ×V is a set of (directed) edges and E∗

is the reflexive transitive closure of E.

If (u, v) ∈ E, then u is the parent of v. Each node
has a unique parent (except the root that has none).
Nodes without children are terminals.

The right index (resp. left index) of a node is
the index of the rightmost (resp. leftmost) termi-
nal dominated by this node. For example, the left
index of the node labelled S: in Figure 2 is 1 and
its right index is 5.

Oracle We extract derivations from trees by fol-
lowing a simple tree traversal. We start with an ini-
tial configuration. While the configuration is not
final, we derive a new configuration by perform-
ing the gold action, which is chosen as follows:

• if the nodes at the top of S and at the top of
D have the same parent node in the gold tree,
perform a reduction with the parent node la-
bel;
• if the node at the top of D and the ith node in
S have the same parent node, perform i − 1
GAP;
• otherwise, perform a SHIFT, optionally fol-

lowed by a unary reduction in the case where
the parent node of the top of D has only one
child.

For instance, the gold sequence of actions for
the tree in Figure 2 is the sequence SH, SH, SH,
SH, SH, RR(NP), GAP, GAP, RR(NP), GAP,
RL(S:), RR(S). Table 1 details the sequence of
configurations obtained when deriving this tree.

Given the constraints defined in Section 2.2, and
if we ignore lexicalisation, there is a bijection be-
tween binary trees and derivations.1 To see why,
we define a total order < on the nodes of a tree.
Let n and n′ be two nodes and let n < n′ iff either
rindex(n) < rindex(n′) or (n′, n) ∈ E∗.

It is immediate that if (n′, n) ∈ E∗, then nmust
be reduced before n′ in a derivation. An invari-
ant of the GAP transition system is that the right
index of the first element of D is equal to the in-
dex of the last shifted element. Therefore, after
having shifted the terminal j, it is impossible to
create nodes whose right-index is strictly smaller
to j. We conclude that during a derivation, the
nodes must be created according to the strict total
order < defined above. In other words, for a given
tree, there is a unique possible derivation which
enforces the constraints described above. Recip-

1But several binarized trees can correspond to the same
n-ary tree.
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S D B Action

Es bestünde somit hinreichender Spielraum
Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit NP[Spielraum] RR(NP)
Es bestünde somit NP[Spielraum] GAP

Es bestünde somit NP[Spielraum] GAP

bestünde somit NP[Spielraum] RR(NP)
bestünde somit NP[Spielraum] GAP

somit S:[bestünde] RL(S:)
S[bestünde] RR(S)

Table 1: Example derivation for the sentence in Figure 2, part-of-speech tags are omitted.

rocally, a well-formed derivation corresponds to a
unique tree.

Completeness and Soundness The GAP transi-
tion system is sound and complete for the set of
discontinuous binary trees labelled with a set of
non-terminal symbols. When augmented with cer-
tain constraints to make sure that predicted trees
are unbinarizable (see Table 7 of Appendix A),
this result also holds for the set of discontinuous
n-ary trees (modulo binarization and unbinariza-
tion).

Completeness follows immediately from the
correctness of the oracle, which corresponds to a
tree traversal in the order specified by <.

To prove soundness, we need to show that any
valid derivation sequence produces a discontinu-
ous binary tree. It holds from the transition system
that no node can have several parents, as parent
assignation via REDUCE actions pops the children
nodes and makes them unavailable to other reduc-
tions. This implies that at any moment, the con-
tent of the stack is a forest of discontinuous trees.
Moreover, at each step, at least one action is possi-
ble (thanks to the constraints on actions). As there
can be no cycles, the number of actions in a deriva-
tion is upper-bounded by 1

2(n
2+n) for a sentence

of length n (see Appendix A.1). Therefore, the
algorithm can always reach a final configuration,
where the forest only contains one discontinuous
tree.

The correctness of SR-GAP system holds only
for the robust case: that is the full set of labeled
discontinuous trees, and not, say, for the set of
trees derived by a true LCFRS grammar also able
to reject agrammatical sentences. From an empir-
ical point of view, a transition system that over-

generates is necessary for robustness, and is de-
sirable for fast approximate linear-time inference.
However, from a formal point of view, the re-
lationship of the SR-GAP transition system with
automata explicitly designed for LCFRS parsing
(Villemonte de La Clergerie, 2002; Kallmeyer and
Maier, 2015) requires further investigations.

2.4 Length of Derivations

Any derivation produced by SR-GAP for a sen-
tence of length n will contain exactly n SHIFTS

and n− 1 binary reductions. In contrast, the num-
ber of unary reductions and GAP actions can vary.
Therefore several possible derivations for the same
sentence may have different lengths.

This is a recurring problem for transition-based
parsing because it undermines the comparability
of derivation scores. In particular, Crabbé (2014)
observed that the score of a parse item is approx-
imatively linear in the number of previous tran-
sitions, which creates a bias towards long deriva-
tions.

Different strategies have been proposed to en-
sure that all derivations have the same length (Zhu
et al., 2013; Crabbé, 2014; Mi and Huang, 2015).
Following Zhu et al. (2013), we use an additional
IDLE action that can only be performed when a
parsing item is final. Thus, short derivations are
padded until the last parse item in the beam is fi-
nal. IDLE actions are scored exactly like any other
action.

SR-CGAP As an alternative strategy to the prob-
lem of comparability of hypotheses, we also
present a variant of SR-GAP, called SR-CGAP, in
which the length of any derivation only depends
on the length of the sentence. In SR-CGAP, each
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SHIFT action must be followed by either a unary
reduction or a ghost reduction (Crabbé, 2015), and
each binary reduction must be preceded by ex-
actly one compound GAPi action (i ∈ {0, . . .m})
specifying the number i of consecutive standard
GAPS. For example, GAP0 will have no effect, and
GAP2 counts as a single action equivalent to two
consecutive GAPS. We call these actions COM-
POUNDGAP, following the COMPOUNDSWAP ac-
tions of Maier (2015).

With this set of actions, any derivation will have
exactly 4n − 2 actions, consisting of n shifts, n
unary reductions or ghost reductions, n − 1 com-
pound gaps, and n− 1 reductions.

The parameter m (maximum index of a com-
pound gap) is determined by the maximum num-
ber of consecutive gaps observed in the training
set. Contrary to SR-GAP, SR-CGAP is not com-
plete, as some discontinuous trees whose deriva-
tion should contain more than m consecutive
GAPS cannot be predicted.

2.5 Beam Search with a Tree-structured
Stack

A naive beam implementation of SR-GAP will
copy the whole parsing configuration at each step
and for each item in the beam. This causes the
parser algorithm to have a practicalO(k ·n2) com-
plexity, where k is the size of the beam and n the
length of a derivation. To overcome this, one can
use a tree-structured stack (TSS) to factorize the
representations of common prefixes in the stack as
described by (Goldberg et al., 2013) for projec-
tive dependency parsing. However the discontinu-
ites entail that a limited amount of copying cannot
be entirely avoided. When a reduction follows n
GAP actions, we need to grow a new branch of
size n + 1 in the tree-structured stack to account
for reordering. The complexity of the inference
becomes O(k · (n+ g)) where g is the number of
gaps in the derivation. As there are very few gap
actions (in proportion) in the dataset, the practical
runtime is linear in the length of the derivation.

2.6 Relationship to Dependency Parsing
Algorithms

The transition system presented in this article uses
two distinct data structures to represent the stack.
In this respect, it belongs to the family of al-
gorithms presented by Covington (2001) for de-
pendency parsing. Covington’s algorithm iterates
over every possible pair of words in a sentence

and decides for each pair whether to attach them
– with a left or right arc – or not. This algorithm
can be formulated as a transition system with
a split stack (Gómez-Rodrı́guez and Fernández-
González, 2015).

3 Experiments

3.1 Datasets

We evaluated our model on two corpora, namely
the Negra corpus (Skut et al., 1997) and the Tiger
corpus (Brants, 1998). To ensure comparability
with previous work, we carried out experiments
on several instantiations of these corpora.

We present results on two instantiations of Ne-
gra. NEGRA-30 consists of sentences whose
length is smaller than, or equal to, 30 words. We
used the same split as Maier (2015). A second
instantiation, NEGRA-ALL, contains all the sen-
tences of the corpus, and uses the standard split
(Dubey and Keller, 2003).

For the Tiger corpus, we also use two instantia-
tions. TIGERHN08 is the split used by Hall and
Nivre (2008). TIGERM15 is the split of Maier
(2015), which corresponds to the SPMRL split
(Seddah et al., 2013).2 We refer the reader to Ta-
ble 8 in Appendix A for further details on the splits
used.

For both corpora, the first step of preprocessing
consists in removing function labels and reattach-
ing the nodes attached to the ROOT and causing
artificial discontinuities (these are mainly punctu-
ation terminals).3

Then, corpora are head-annotated using the
headrules included in the DISCO-DOP package,
and binarized by an order-0 head-Markovization
(Klein and Manning, 2003). There is a rich lit-
erature on binarizing LCFRS (Gómez-Rodrı́guez
et al., 2009; Gildea, 2010), because both the gap-
degree and the rank of the resulting trees need
to be minimized in order to achieve a reason-
able complexity when using chart-based parsers
(Kallmeyer and Maier, 2013). However, this
seems not to be a problem for transition-based
parsing, and the gains of using optimized bina-
rization algorithms do not seem to be worth the

2As in previous work (Maier, 2015), two sentences (num-
ber 46234 and 50224) are excluded from the test set because
they contain annotation errors.

3We used extensively the publicly available software
TREETOOLS and DISCO-DOP for these preprocessing steps.
The preprocessing scripts will be released with the parser
source code for full replicability.
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s1.c[w/t]

s1.lc[lw/lt]

s1.wl/tl

s1.rc[rw/rt]

s1.wr/tr

s0.c[w/t]

s0.lc[lw/lt]

s0.wl/tl

s0.rc[rw/rt]

s0.wr/tr

d1.c[w/t]

d1.lc[lw/lt]

d1.wl/tl

d1.rc[rw/rt]

d1.wr/tr

d0.c[w/t]

d0.lc[lw/lt]

d0.wl/tl

d0.rc[rw/rt]

d0.wr/tr
b0.w/t b1.w/t . . .

Figure 4: Schematic representation of the top-most elements of S, D and B, using the notations in-
troduced in Table 2. Due to discontinuities, it is possible that both the left- and right- index of si are
generated by the same child of si.

BASELINE

b0tw b1tw b2tw b3tw d0tc
d0wc s0tc s0wc s1tc s1wc
s2tc s2wc s0lwlc s0rwrc d0lwlc

d0rwrc s0wd0w s0wd0c s0cd0w s0cd0c
b0wd0w b0td0w b0wd0c b0td0c b0ws0w
b0ts0w b0ws0c b0ts0c b0wb1w b0wb1t
b0tb1w b0tb1t s0cs1wd0c s0cs1cd0c b0ws0cd0c
b0ts0cd0c b0ws0wd0c b0ts0wd0c s0cs1cd0w b0ts0cd0w

+ EXTENDED

s3tc s3wc s1lwlc s1rwrc d1tc
d1wc d2tc d2wc s0cs1cd0c s2cs0cs1cd0c

s0cd1cd0c s0cd1cs1cd0c

+ SPANS

d0cwlwr s0cwlwr d0cwls0wr d0cwrs0wl d0wlwrb0w
d0wlwrb1w d0cwrs0wlo d0ctlwr d0cwltr d0ctltr
s0ctlwr s0cwltr s0ctltr d0ctls0wr d0cwls0tr
d0ctls0tr d0ctrs0wl d0cwrs0tl d0ctrs0tl d0wlwrb0t
d0wlwrb1t d0cwlo d0ctlo s0cwro s0ctro

Table 2: Feature templates. s, d and b refer respec-
tively to the data structures (S, D, B) presented in
Section 2.2. The integers are indices on these data
structures. left and right refer to the children of
nodes. We use c, w and t to denote a node’s la-
bel, its head and the part-of-speech tag of its head.
When used as a subscript, l (r) refers to the left
(right) index of a node. Finally lo (ro) denotes the
token immediately left to the left index (right to
the right index). See Figure 4 for a representation
of a configuration with these notations.

complexity of these algorithms (van Cranenburgh
et al., 2016).

Unless otherwise indicated, we did experiments
with gold part-of-speech tags, following a com-
mon practice for discontinuous parsing.

3.2 Classifier

We used an averaged structured perceptron
(Collins, 2002) with early-update training (Collins
and Roark, 2004). We use the hash trick (Shi et al.,
2009) to speed up feature hashing. This has no no-
ticeable effect on accuracy and this improves train-
ing and parsing speed. The only hyperparameter
of the perceptron is the number of training epochs.

We fixed it at 30 for every experiment, and shuf-
fled the training set before each epoch.

Features We tested three feature sets described
in Table 2 and Figure 4. The BASELINE feature
set is the transposition of Maier (2015)’s baseline
features to the GAP transition system. It is based
on B, on S, and on the top element of D, but does
not use information from the rest of D (i.e. the
gapped elements). This feature set was designed
in order to obtain an experimental setting as close
as possible to that of Maier (2015).

In constrast, the EXTENDED feature set in-
cludes information from further in D, as well as
additional context in S and n-grams of categories
from both S and D.

The third feature set SPANS is based on the idea
that constituent boundaries contain critical infor-
mation (Hall et al., 2014) for phrase structure pars-
ing. This intuition is also confirmed in the context
of lexicalized transition-based constituent parsing
(Crabbé, 2015). To adapt this type of features to
discontinuous parsing, we only rely on the right
and left index of nodes, and on the tokens preced-
ing the left index or following the right index.4

Unknown Words In order to learn parameters
for unknown words and limit feature sparsity, we
replace hapaxes in the training set by an UN-
KNOWN pseudo-word. This accounts for an im-
provement of around 0.5 F1.

3.3 Results

We report results on test sets in Table 3.
All the metrics were computed by DISCO-DOP

with the parameters included in this package
(proper.prm). The metrics are labelled F1, ig-
noring roots and punctuation. We also present
metrics which consider only the discontinuous
constituents (Disc. F1 in Tables 3 and 4), as these

4For discontinuous constituents, internal boundaries (for
gaps) might prove useful too.
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NEGRA-30 NEGRA-ALL TIGERHN08 TIGERM15
Method All L ≤ 40 All L ≤ 40 All SPMRL / standard

Fernández-González and Martins (2015) dep2const 82.56† 81.08 80.52 85.53 84.22 80.62 / -
Hall and Nivre (2008) dep2const - - - 79.93 - -/-
van Cranenburgh (2012) DOP - 72.33 71.08 - - -/-
van Cranenburgh and Bod (2013) DOP - 76.8 - - - -/-
Kallmeyer and Maier (2013) LCFRS 75.75 - - - - -/-
Versley (2014a) EAFI - - - 74.23 - -/-
Maier (2015) (baseline, b=(Ne=8/Ti=4)) SR-SWAP 75.17 (15.76) - - - - -/-
Maier (2015) (best, b=(Ne=8/Ti=4)) SR-SWAP 76.95 (19.82) - - 79.52 - - / 74.71 (18.77)
Maier and Lichte (2016) (best, b=4) SR-SWAP 80.02 -/ 76.46 (16.31)

This work, beam=4 F1 (Disc. F1)

GAP, BASELINE SR-GAP 79.31 (38.66) 79.29 (39.78) 78.53 (38.64) 82.84 (47.13) 81.67 (44.83) 78.77 / 78.86 (41.36)
GAP, +EXTENDED SR-GAP 80.44 (41.13) 80.34 (43.42) 79.79 (43.56) 83.57 (50.91) 82.43 (48.81) 79.42 / 79.51 (43.76)
GAP, +SPANS SR-GAP 81.64 (42.94) 81.70 (47.17) 81.28 (46.85) 84.40 (51.98) 83.16 (49.76) 80.30 / 80.40 (46.50)

CGAP, BASELINE SR-CGAP 79.61 (41.06) 79.32 (43.49) 78.64 (42.13) 82.90 (47.86) 81.68 (45.55) 78.32 / 78.41 (39.99)
CGAP, +EXTENDED SR-CGAP 80.26 (40.52) 80.48 (43.42) 79.98 (42.60) 83.23 (50.57) 82.00 (48.28) 79.32 / 79.42 (44.66)
CGAP, +SPANS SR-CGAP 81.16 (42.39) 81.41 (44.73) 80.89 (44.13) 83.92 (50.83) 82.79 (48.84) 80.38 / 80.48 (46.17)

This work, beam=32 F1 (Disc. F1)

GAP, BASELINE SR-GAP 80.57 (42.16) 80.20 (43.87) 79.75 (42.80) 83.53 (51.91) 82.41 (49.63) 79.60 / 79.69 (44.77)
GAP, +EXTENDED SR-GAP 81.61 (45.75) 81.13 (47.52) 80.54 (46.89) 84.33 (53.84) 83.17 (51.88) 80.50 / 80.59 (46.45)
GAP, +SPANS SR-GAP 82.46 (47.35) 82.76 (51.82) 82.16 (50.00) 85.11 (55.99) 84.01 (54.26) 81.50 / 81.60 (49.17)

Table 3: Final test results. For TIGERM15, we report metrics computed with the SPMRL shared task
parameters (see Section 3.3), as well as the standard parameters. †Trained on NEGRA-ALL.

can give some qualitative insight into the strengths
and weaknesses of our model.

For experiments on TIGERM15, we addition-
ally report evaluation scores computed with the
SPMRL shared task parameters5 for comparabil-
ity with previous work.

SR-GAP vs SR-CGAP In most experimental set-
tings, SR-CGAP slightly underperformed SR-GAP.
This result came as a surprise, as both compound
actions for discontinuities (Maier, 2015) and ghost
reductions (Crabbé, 2014) were reported to im-
prove parsing.

We hypothesize that this result is due to the
rarity of unary constituents in the datasets and to
the difficulty to predict COMPOUNDGAPS with a
bounded look at D and S caused by our practical
definition of feature templates (Table 2). In con-
trast, predicting gaps separately involves feature
extraction at each step, which crucially helps.

Feature Sets The EXTENDED feature set out-
performs the baseline by up to one point of F1.
This emphasizes that information about gapped
non-terminal is important. The SPANS feature set
gives another 1 point improvement. This demon-
strates clearly the usefulness of span features for
discontinuous parsing. A direct extension of this
feature set would include information about the

5These are included in http://pauillac.inria.
fr/˜seddah/evalb_spmrl2013.tar.gz. In this
setting, we reattach punctuation to the root node before eval-
uation.

Beam size TIGERHN8 TIGERM15
F1 Disc. F1 F1 Disc. F1

2 81.86 48.49 84.28 49.04
4 83.27 53.00 85.43 53.14
8 83.61 54.42 85.93 55.00
16 83.84 54.81 86.13 56.17
32 84.32 56.22 86.10 55.50
64 84.14 56.01 86.30 56.90

128 84.05 55.76 86.13 57.04

Table 4: Results on development sets for different
beam sizes.

boundaries of gaps in a discontinuous constituent.
A difficulty of this extension is that the number of
gaps in a constituent can vary.

3.4 Comparisons with Previous Works

There are three main approaches to direct dis-
continuous parsing.6 One such approach is
based on unprojective or pseudo-projective depen-
dency parsing (Hall and Nivre, 2008; Fernández-
González and Martins, 2015), and aims at enrich-
ing dependency labels in such a way that con-
stituents can be retrieved from the dependency
tree. The advantage of such systems is that they
can use off-the-shelf dependency parsers with rich
features and efficient inference.

6As opposed to non-direct strategies, based for example
on PCFG parsing and post-processing.
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The second approach is chart-based parsing,
as examplified by the DOP (Data Oriented Pars-
ing) models of van Cranenburgh (2012) and
van Cranenburgh et al. (2016) and Probabilistic
LCFRS (Kallmeyer and Maier, 2013; Evang and
Kallmeyer, 2011).

The last paradigm is transition-based parsing.
Versley (2014a) and Versley (2014b) use an easy-
first strategy with a swap transition. Maier (2015)
and Maier and Lichte (2016) use a shift-reduce al-
gorithm augmented with a swap transition.

Table 3 includes recent results from these vari-
ous parsers. The most successful approach so far
is that of Fernández-González and Martins (2015),
which outperforms by a large margin transition-
based parsers (Maier, 2015; Maier and Lichte,
2016).

SR-GAP vs SR-SWAP In the same settings (base-
line features and beam size of 4), SR-GAP outper-
forms SR-SWAP by a large margin on all datasets.
It is also twice as accurate when we only consider
discontinuous constituents.

In Section 3.5, we analyse the properties of both
transition systems and give hypotheses for the per-
formance difference.

Absolute Scores On all datasets, our model
reaches or outperforms the state of the art
(Fernández-González and Martins, 2015). This is
still the case in a more realistic experimental setup
with predicted tags, as reported in Table 5.7

As pointed out by Maier and Lichte (2016), a
limitation of shift-reduce based parsing is the lo-
cality of the feature scope when performing the
search. The parser could be in states where the
necessary information to take the right parsing de-
cision is not accessible with the current scoring
model.

To get more insight into this hypothesis, we
tested large beam sizes. If the parser maintains
a much larger number of hypotheses, we hope that
it could compensate for the lack of information by
delaying certain decisions. In Table 4, we present
additional results on development sets of both in-
stantiations of the TIGER corpus, with different
beam sizes. As was expected, a larger beam size

7Like Fernández-González and Martins (2015), we used
the predicted tags provided by the SPMRL shared task orga-
nizers.

TIGERM15 F1 (spmrl.prm)
≤ 70 All

Versley (2014b) 73.90 -
Fernández-González and Martins (2015) 77.72 77.32

SR-GAP, beam=32, +SPANS 79.44 79.26

Table 5: Results on the Tiger corpus in the
SPMRL predicted tag scenario.

gives better results. The beam size controls the
tradeoff between speed and accuracy.8

Interestingly, the improvement from a larger
beam size is greater on discontinuous constituents
than overall. For example, from 16 to 32, F1 im-
proves by 0.5 on TIGERHN8 and F1 on discontin-
uous constituents improves by 1.4.

This suggests that further improvements could
be obtained by augmenting the lookahead on the
buffer and using features further on S and D. We
plan in the future to switch to a neural model such
as a bi-LSTM in order to obtain more global repre-
sentations of the whole data structures (S, D, B).

3.5 Discussion: Comparing SR-SWAP and
SR-GAP

This section investigates some differences be-
tween SR-SWAP and SR-GAP. We think that char-
acterizing properties of transition systems helps to
gain better intuitions into the problems inherent to
discontinuous parsing.

Derivation Length Assuming that GAP or
SWAP are the hardest actions to predict and are
responsible for the variability of the lengths of
derivation, we hypothesize that the number of
these actions, hence the length of a derivation, is
an important factor. Shorter derivations are less
prone to error propagation.

In both cases, the shortest possible derivation
for a sentence of length n corresponds to a pro-
jective tree, as the derivation will not contain any
SWAP or GAP.

In the worst case, i.e. the tree that requires the
longest derivation to be produced by a transition
system, SR-GAP is asymptotically twice as more
economical than SR-SWAP (Table 6). In Figure 5
of Appendix A, we present the trees corresponding
to the longest possible derivations in both cases.

8Training with the full-feature model took approximately
1h30 on TIGERM15 with a beam size of 4. Parsing speed, in
the same setting, is approximately 4, 700 tokens per second
(corresponding to 260 sentences per second) on a single Xeon
2.30 GHz CPU.
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SR-GAP SR-SWAP SR-CSWAP

Theoretical longest derivation n2+n
2 n2 − n+ 1

Longest derivation 276 2187 1276
Total number of gaps/swaps 64096 411970
Max consecutive gaps/swaps 10 69
Avg. deriv. length wrt n 2.03n 3.09n 2.66n

Table 6: Statistics on Tiger train corpus. n is the
length of a sentence. SR-CSWAP is a variant of SR-
SWAP proposed by Maier (2015).

These trees maximise the number of GAP and
SWAP actions.

The fact that derivations are shorter with SR-
GAP is confirmed empirically. In Table 6, we
present several metrics computed on the train sec-
tion of TIGERM15. In average, SR-SWAP deriva-
tions are empirically 50% longer than SR-GAP

derivations. Despite handling discontinuities, SR-
GAP derivations are not noticeably longer than
those we would get with a standard shift-reduce
transition system (n shifts and n− 1 binary reduc-
tions).

Intuitively, the difference in length of deriva-
tions comes from two facts. First, swapped termi-
nals are pushed on the buffer and must be shifted
once more, whereas with SR-GAP, each token is
shifted exactly once. Second, transition systems
for discontinuous parsing implicitly predict an or-
der on terminals (discontinuous trees can be trans-
formed to continuous trees by changing the prece-
dence order on terminals). With SR-SWAP, re-
ordering is done by swapping two terminals. In
contrast, SR-GAP can swap complex non-terminals
(already ordered chunks of terminals), making the
reordering more efficient in terms of number of
operations.

It would be interesting to see if SR-SWAP is im-
proved when swapping non-terminals is allowed.
However, it would make feature extraction more
complex, because it would no longer be assumed
that the buffer contains only tokens.

The effect of the derivation length is confirmed
by Maier and Lichte (2016) who explored different
oracles for SR-SWAP and found that oracles pro-
ducing shorter derivations gave better results.

Feature Locality A second property which ex-
plains the performance of SR-GAP is the access
to three data structures (vs two for SR-SWAP) for
extracting features; SR-GAP has access to an ex-
tended domain of locality. Moreover, with SR-
SWAP, the semantics of features from the queue

does not make a distinction between swapped to-
kens and tokens that have not been shifted yet.
When the parser needs to predict a long sequence
of consecutive swaps, it is hardly in a position to
have access to the relevant information. The use of
three data structures, along with shorter sequences
of GAP actions, seems to alleviate this problem.

4 Conclusion

We have introduced a novel transition system for
lexicalized discontinuous parsing. The SR-GAP

transition system produces short derivations, com-
pared to SR-SWAP, while being able to derive any
discontinuous tree.

Our experiments show that it outperforms the
best previous transition system (Maier, 2015) in
similar settings and different datasets. Combined
with a span-based feature set, we obtained a very
efficient parser with state-of-the-art results.

We also provide an efficient C++ implementa-
tion of our parser, based on a tree-structured stack.

Direct follow-ups to this work consist in switch-
ing to a neural scoring model to improve the rep-
resentations of D and S and alleviate the local-
ity issues in feature extraction (Kiperwasser and
Goldberg, 2016; Cross and Huang, 2016).
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Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
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A Supplemental Material

Action Conditions

SHIFT B is not empty.
The last action is not GAP.

GAP S has at least 2 elements.
If d0 is a temporary symbol, there must be
at least one non temporary symbol in S1:.

RU(X) The last action is SHIFT.
X is an axiom iff this is a one-word sentence.

R(R|L)(X) S is not empty.
X is an axiom iff B is empty, and S
and D both have exactly one element.
If X is a temporary symbol and if B is empty,
there must be a non-temporary symbol in either
S1: or D1:.

RR(X) s0 is not a temporary symbol.

RL(X) d0 is not a temporary symbol.

IDLE The configuration must be final, i.e.
S and B are empty and the only element
of S is the axiom.

Table 7: List of all constraints on actions for the
SR-GAP transition system. The notation S1: is
used to denote the elements of S without the first
one.

A.1 Longest Derivation Computation
This section details the computation of the longest
possible derivations for a sentence of length n.
For the sake of simplicity, we ignore unary con-
stituents.
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Number or index of sentences

NEGRA-30 train/dev/test 14669/1833/1833
NEGRA-ALL train/test/dev 18602/1000/1000
TIGERM15 train/dev/test 40468/5000/5000

TIGERHN08 train/dev i (mod 10) > 1/i ≡ 1 (mod 10)
TIGERHN08 train/test i 6≡ 0 (mod 10)/i ≡ 0 (mod 10)

Table 8: Details on the standard splits.

SR-GAP There are n shifts and n − 1 binary re-
ductions in a derivation. The longest derivation
maximises the number of gap actions, by perform-
ing as many gap actions as possible before each
binary reductions. When S contains k elements,
there are k − 1 possible consecutive gap actions.
So the longest derivation starts by n shifts, fol-
lowed by n− 2 gap actions, one binary reduction,
n−3 gap actions, one binary reduction, and so on.

Lgap(n) = n+ ((n− 2) + 1) + · · ·+ 1

= 1 + 2 + · · ·+ n

=
n(n− 1)

2

This corresponds to the tree on the left-hand
side of Figure 5.

SR-SWAP Using the oracle or Maier (2015), the
longest derivation for a sentence of length n con-
sists in maximising the number of swaps before
each reduction.9

After the first shift, the derivation performs re-
peatedly n − i shifts, n − i − 1 swaps and one
reduction, i being the number of shifted terminals
before each iteration.

Lswap(n) = 1 +
n−1∑
i=1

((n− i) + (n− i− 1) + 1)

= 1 + 2
n−1∑
i=1

(n− i)

= 1 + 2
n(n− 1)

2
= n2 − n+ 1

This corresponds to the tree on the right-hand
side of Figure 5.

9Other possible oracles (Maier and Lichte, 2016) are more
efficient on this example and could have different (and better)
worst cases.
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Figure 5: Example tree corresponding to the
longest derivation for a sentence of length 5 with
GAP and SWAP.


