Information Focus marking in French. Acoustic predictors of postfocal deaccentuation

Cristel Portes¹, Leonardo Lancia² & Jean-Marie Marandin³

¹Université de Provence-CNRS-LPL, ²Max Planck Institute for Evolutionary Anthropology, ³CNRS-LLF-Paris7 contact: cristel.portes@lpl-aix.fr

 Information Focus (IF) The part of the answer which resolves the question. (1a) All focus answers Q: What happened A: [John invited Mary last night]F (1b) Narrow focus answers Q: Who did John invite last night? A: John invited [Mary]F last night 	French Intonational Phonology Adapted from [3] Optional initial rise LHi Obligatory final pitch accent T*	$(Wf)(Wf) \qquad Wc \qquad (Wc) \qquad \qquad$			
odic marking of focus in French see [1] [2] [3] [4] Consensus : Postfocal dephrasing Open questions: Role and characteristics of the initial rise LHi? Role and characteristics of pitch range? On the focal constituent? On the prefocal constituent?					

Answers to broad or partial questions bearing on the object O Pattern: V (subject clitic+verb), O (Object), A (adverbial) [J'ai visionné]V [les videos]O [la nuit dernière.]A "I screened the videos last night"

Postfocal dephrasing (Deaccented A) 60% of the answers to partial questions 30% of the answers to broad questions

Measures (on V, O, si & sf) Mean duration, mean F0, F0 span (F0maximum-F0minimum) and mean intensity **si**=first syllable of the content word of O (**LHi**)– **sf**=final syllable of the AP (**T***)

Correlations	Statistics
To run statistics: highly correlated variables are	Model: Logistic regression.
replaced with their first principal components	Dependent variable : Probability of deaccentuation.
	Predictors: PC1(OF0mean, sfF0mean), PC2(OF0mean, sfF0mean), PC1(OF0span, sfF0span),
	DCO(OEOmene afEOmene) aiEOmene aiEOmene Odum $xEOmene art EOmene art that aiDum$

PC2(OF0span, stF0span), stF0mean, stF0span, Odur, vF0mean, vF0span, olnt, vlnt, stDur. Random factor: Subject's identity.

Results

Significant predictors

	I	C1 (OFOmean, sfFOmean)	Odur	siFOmean	siFOspan
Correlation structure	Z: -	2.643	-2.762	2.095	2.160
	$\Pr(> Z):$.00821	0.00574	0.03618	0.03077
f_{u} f_{u	Deaccent	· · · · · · · · · · · · · · · · · · ·	<pre>i i i i i i i i i i i i i i i i i i i</pre>		Provide the second s
Conclusion In our <i>Information</i> focus data, deaccentuation is p intensification of the initial rise LHi on the foc => double marking : left and right edge of the foca Compared with results obtained with <i>contrastive</i> to Confirm that pitch range is higher in focal O but Contrary to contrastive focus, no pre-focal pitch The shorter duration of the focus constituent rem explained.	oredicted by al Object O l constituent. focus in [3] and [4]: t on LHi, not on T*; compression ; ains to be	 References [1] Di Cristo, A. 1999. Le 205, Langues 4(2), 258-20 [2] Beyssade, C.; Hemfort French, In : Yoo, H-Y & D 2009, 9-17. [3] Jun, SA. & Fougeron (ed.) Intonation: Analysis, [4] Dohen, M. & Loevenbre focal Deaccentuation in F Spoken Language Process 	cadre accentuel du frança 67. h, B.; Marandin, JM.; Po elais-Roussarie, E. (eds), I , C. 2000. A phonological modeling and technology ruck, H. 2004. Pre-focal Re rench. In Proceedings of t sing, 1, 785-788.	is contemporain, Lortes, C. 2010. Info Proceedings of IDP model of French in Kluwer, 209-242. Phrasing, Focal En he 8th Internationa	Langues 3(2), pp.184- rmation Focus in 2009, Paris, September atonation, in Botinis, A.

