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The present work proposes a computational model of morpheme combination at the meaning level. The
model moves from the tenets of distributional semantics, and assumes that word meanings can be
effectively represented by vectors recording their co-occurrence with other words in a large text corpus.
Given this assumption, affixes are modeled as functions (matrices) mapping stems onto derived forms.
Derived-form meanings can be thought of as the result of a combinatorial procedure that transforms the
stem vector on the basis of the affix matrix (e.g., the meaning of nameless is obtained by multiplying the
vector of name with the matrix of -less). We show that this architecture accounts for the remarkable
human capacity of generating new words that denote novel meanings, correctly predicting semantic
intuitions about novel derived forms. Moreover, the proposed compositional approach, once paired with
a whole-word route, provides a new interpretative framework for semantic transparency, which is here
partially explained in terms of ease of the combinatorial procedure and strength of the transformation
brought about by the affix. Model-based predictions are in line with the modulation of semantic
transparency on explicit intuitions about existing words, response times in lexical decision, and mor-
phological priming. In conclusion, we introduce a computational model to account for morpheme
combination at the meaning level. The model is data-driven, theoretically sound, and empirically
supported, and it makes predictions that open new research avenues in the domain of semantic
processing.

Keywords: distributional semantic models, compositionality, word formation, derivational morphology,
semantic transparency

Large-scale statistical models induced from text corpora play an
increasingly central role in computational simulations of various
aspects of human language processing and acquisition (see, e.g.,
Brent & Cartwright, 1996; Dubey, Keller, & Sturt, 2013; Hay &
Baayen, 2005, for just a few examples). Within this general trend,
the last few decades witnessed widespread interest in using meth-
ods from distributional semantics to obtain quantitative estimates
of important but hard-to-operationalize semantic variables such as

the degree of conceptual or topical similarity between two words.
These methods (whose most famous implementations might be
Latent Semantic Analysis, HAL and Topic Models) approximate
lexical meanings with vectors that summarize the contexts in
which words appear, under the hypothesis that similar words will
occur in similar contexts.

However, words are not the smallest meaning-bearing units in a
language. Most words are composed by smaller elements consis-
tently associated to specific semantic aspects: nullify contains null
and -ify, and means to make something null; driver contains drive
and -er, and means someone who drives. These elements, called
morphemes (Bloomfield, 1933), are at the base of the lexical
productivity of human languages, that is, their capacity to generate
endless novel words that are immediately understandable by native
speakers. The examples above fall, in particular, within the domain
of derivational morphology, where a free-standing morpheme, or
word (the stem, e.g., null), is combined with a bound element (the
affix, e.g., -ify) to generate the derived form, which is perceived as
a separate lexical item. Inflectional morphology generates instead
inflected variants of the same item, as in sing/sings.

Distributional semantics has already been used in studies of
morphological processing, where distributional similarity between
a derived form (e.g., nullify) and its stem (e.g., null) can be used to
estimate the degree of semantic transparency of the complex form,
under the assumption that opaque forms should be semantically far
apart from their constituents. Although this is a promising ap-
proach to quantify the degree of semantic relatedness between the
starting and end points of a morphological process, the field is still
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missing an empirical method to characterize the semantic side of
the process itself. Thanks to distributional semantics, we have an
objective way to measure that, say, redo is highly related to its
stem do whereas recycle is not so similar to cycle, but we are still
missing a model that, given an appropriate meaning representation
for an affix, say re-, and a stem, say do or cycle, generates a
meaning representation for the corresponding derived forms (redo
and recycle).1

This is a big gap. Without an explicit account of how morpho-
logical composition works on the semantic side, our models of
morphological processing are ignoring, paradoxically, one of the
core reasons why morphological processes exist, that is, to express
new meanings by combining existing morphemes. More con-
cretely, fundamental debates in the literature (e.g., Di Sciullo &
Williams, 1987; Sandra, 1994), for example on the extent to which
complex words must be listed in the lexicon as “semantically
unpredictable,” are bound to remain purely theoretical in lack of an
objective model of how semantically predictable meanings of
complex words should look like.

In this article, we purport to fill the gap. We exploit recent
advances in distributional semantics to develop a fully automated
and data-induced morphological composition component that,
given distributional representations of stems and affixes, produces
a distributional representation for the corresponding derived form.

The proposed model can generate distributional representations
for the meanings of novel derived words, hence tapping into one of
the core functions of derivational morphology, that is, lexical
productivity. Therefore, in the first set of experiments we focus on
the predictions that our model makes about novel forms. We show
that certain quantitative properties of compositionally obtained
semantic representations of nonce forms derived with our model
are significant predictors of subject intuitions about their semantic
meaningfulness (harassable and windowist are equally unattested
in a very large corpus, but participants found the first highly
acceptable, the second meaningless). We show moreover that
words that our model automatically picks as highly related to
composed nonce forms (“nearest neighbors”) are indeed closer in
meaning to the nonce forms than to other terms, including their
stems, according to subject judgments.

Next, we apply our compositional model to existing derived
forms in three experimental case studies. We use the compositional
model to account for behavioral patterns influenced by the degree
of semantic transparency between a derived form and its stem.
More specifically, we let our model predict explicit semantic
relatedness intuitions, modulate stem frequency effects in a
lexical-decision task, and account for morphological priming re-
sults. These successful experiments demonstrate that, when
equipped with an appropriate semantic combination module, an
approach in which complex words are derived compositionally can
predict effects associated to different degrees of semantic trans-
parency that are interestingly complementary to those that are best
captured by relying on full-form representations for the meanings
of opaque words. Overall, a more nuanced picture of semantic
transparency effects emerges from our experimental results.

Taken together, the evidence presented in this article indicates
that our compositional distributional semantics framework pro-
vides an effective meaning layer for simulations of morphological
processing. The richer, more flexible meaning composition rules
that our system learns from data capture a wider range of compo-

sition patterns than just fully transparent ones, and have important
theoretical implications for the development of models of word
meaning. The model can be profitably used to obtain data-driven,
quantitatively defined semantic representations for complex forms,
irrespective of them being well-known or never heard before.

Semantic Aspects of Morphological Processing

The psycholinguistic literature has long investigated the role of
morphology in word recognition (Taft & Forster, 1975). This line
of research suggests that morphological information influences the
way a word is processed beyond pure semantic and form similar-
ity. Priming experiments (Feldman, 2000; Rastle, Davis, Marslen-
Wilson, & Tyler, 2000) showed that presenting a morphological
related prime before the target (e.g., cattish-cat) leads to larger
facilitations in response times compared with using semantically
(dog-cat) or form-related primes (cattle-cat).

Although these results indicate that morphology cannot be re-
duced to a by-product of semantic similarity, the semantic com-
ponent appears to be important in many morphological effects.
Indeed, the degree of semantic transparency of words modulates
the mentioned priming effect (Feldman & Soltano, 1999; Marslen-
Wilson, Tyler, Waksler, & Older, 1994; Rastle et al., 2000): if the
meaning of a complex word is associated to the meaning of its
constituents (dealer-deal), the priming effect will be larger than
that observed for opaque pairs (courteous-court). This modulation
on morphological priming, although it might differ in magnitude,
can be observed across several languages and experimental ma-
nipulations (e.g., Diependaele, Sandra, & Grainger, 2005, 2009;
Feldman, Kostić, Gvozdenović, O’Connor, & Moscoso del Prado
Martín, 2012; Feldman, O’Connor, & Moscoso del Prado Martín,
2009; Järvikivi & Pyykkönen, 2011; Kazanina, 2011; Marelli,
Amenta, Morone, & Crepaldi, 2013; Rueckl & Aicher, 2008; but
see Frost, Forster, & Deutsch, 1997). Later in the article, we will
come back to the semantic transparency issue and discuss it in
detail, because it will play a central role in the empirical assess-
ment of our model. For the present discussion, it is sufficient to
conclude from the relevant experimental evidence that the process-
ing of a complex word is influenced by the semantic properties of
the elements it is made of.

This notion is also supported by the literature on family size
effects. The family size of a complex word is computed as the
count of the distinct words that contain the same stem. The
variable has a facilitatory effect on word recognition for both
complex (Bertram, Baayen, & Schreuder, 2000) and simple
(Schreuder & Baayen, 1997) word processing. Crucially, the na-
ture of the family size effect is essentially semantic. First, it
emerges only late (i.e., at central processing levels) in a progres-
sive demasking condition (Schreuder & Baayen, 1997). Second, it

1 Of course, it is fairly standard in the theoretical morphological litera-
ture to use place-holders or even carefully crafted feature structures to
represent the meaning of stems and affixes (e.g., Lieber, 2004). For
example, the meaning of re- might be equated to a [�iterate] feature.
However, these featural representations are not detailed and flexible
enough to make quantitative predictions about the morphological phenom-
ena studied in the experimental literature. Moreover, hand-crafting feature
structures is only feasible for closed-class affixes, as there are relatively
few of them and their meanings are very general, and leaves stem repre-
sentations largely unspecified.
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works better as a predictor for response latencies if opaque forms
(e.g., cryptic when considering the family size of crypt) are ex-
cluded from counting (Bertram et al., 2000; Moscoso del Prado
Martín, Bertram, Häikiö, Schreuder, & Baayen, 2004). Third, the
effect can be dissociated from the influence of family frequency
(e.g., the cumulative corpus counts of morphological relatives),
which is believed to be associated to visual familiarity (De Jong,
Schreuder, & Baayen, 2000). Fourth, irregular relatives crucially
contribute to the effect in virtue of their semantic connection and
despite their orthographic dissimilarity with the word (De Jong et
al., 2000). Fifth, the effect of family size interacts with other
semantic dimensions (e.g., concreteness) of the target word (Feld-
man, Basnight-Brown, & Pastizzo, 2006). Sixth, family size is
predictive of monolinguals’ lexical decision latencies across unre-
lated languages (Moscoso Del Prado Martín et al., 2005). Taken
together, these results indicate that the morphological relations
entertained by a word play a role when that word is read, and this
happens on the basis of meaning-mediated associations. Data from
Finnish (Laine, 1999; Lehtonen, Harrer, Wande, & Laine, 2014)
further suggest that stems and affixes may be differentially repre-
sented at the semantic level: in a semantic decision task on in-
flected words, violations affecting the affix were more difficult to
reject than violations affecting the stem, indicating that suffix-
related information is secondary to stem meaning.

Additional supporting evidence for the importance of semantics
in morphology comes from studies of compound processing. Re-
cent work has shown that the semantic properties of the individual
constituents (year and book) influence the recognition of the whole
compound (yearbook), either because of activation/interference
from their core meanings (Ji, Gagné, & Spalding, 2011; Marelli &
Luzzatti, 2012) or for an effect associated with their emotional
valence (Kuperman, 2013).

In conclusion, there is plenty of evidence that morpheme se-
mantics plays a role in the processing of complex words: morpho-
logical effects are not simply dependent on superficial, formal
similarities between morphologically related words, but also in-
volve access to morpheme meanings. Even more important, the
ecological purpose of word processing is comprehension: a crucial
question that any complete model of morphological processing
should address is how we understand the meaning of a morpho-
logically complex word, and as a consequence how morpheme
meanings are represented in the semantic system.

These empirical and theoretical considerations notwithstanding,
morphological processing models often lack a detailed description
of how morphemes are represented at the semantic level, mostly
focusing on early, orthographic-lexical levels of word recognition.
In some cases (e.g., Crepaldi, Rastle, Coltheart, & Nickels, 2010)
the architecture of the semantic system is left purposely under-
specified. A similar approach is adopted by Taft (2004): the
meaning level is generically described as containing “semantic
information,” which is in turn activated by lemma representations
assumed to be holistic for opaque words (cryptic) and morpheme-
based for transparent words (redo). An explicit (as well as essential
for model building) assumption about semantic representations
was made within the connectionist framework. This class of mod-
els explains word recognition by using distributed hidden layers
interfacing orthographic and semantic information (Plaut & Gon-
nerman, 2000). In these architectures, the semantic level is popu-
lated by subsymbolic nodes representing semantic features; word

meanings are then represented as activation distributions across
these nodes. Indeed, because such models do not conceive a lexical
system specifying representations for morphological units, they
explain morphological effects as a by-product of the large overlap,
in terms of both form and meaning, between a derived form and its
stem: morphology is seemingly important because read and reader
have similar distributed representations, but read is not actively
used to construct the meaning of reader online. In opposition to
this, some models of word processing (Baayen, Milin, Durdević,
Hendrix, & Marelli, 2011; Baayen & Schreuder, 1996; Caramazza,
Laudanna, & Romani, 1988) postulate stored morpheme represen-
tations in the semantic system. These models assume that stems
and affixes are eventually combined to obtain the whole-word
meaning, but how this procedure unfolds is left unspecified, at
least from a computational point of view. Meaning composition
has been instead central to the study of novel compounds, that is,
research on conceptual combination between content words (e.g.,
Costello & Keane, 2000; Gagné & Spalding, 2009). Although
these models might provide some insight as to how also affixes are
processed, combining two content words (e.g., stone � squirrel)
and combining a root and an affix (e.g., stone � ful) are relatively
different operations, each of them subtending its own procedures
and posing its own problems.

In conclusion, although different assumptions have been made
time after time, the psycholinguistic literature is generally lacking
detailed descriptions of how affixed words are represented and
processed at the meaning level. This gap is puzzling, all the more
so when considering that the time course of the semantic influence
on morpheme processing is one of the central issues of current
psycholinguistic research on lexical morphology (e.g., Feldman et
al., 2009; Rastle & Davis, 2008).

Distributional Semantic Models

Distributional semantic models (DSMs) automatically extract
word meaning representations from large collections of text, or
corpora. Recent surveys of these models include Clark (in press),
Erk (2012), Lenci (2008), and Turney and Pantel (2010).

DSMs rely on the idea, known as the distributional hypothesis
(Firth, 1957; Harris, 1954; Miller & Charles, 1991), that if two
words are similar in meaning they will have similar distributions in
texts, that is, they will tend to occur in similar linguistic contexts.
But then, by inverting the postulated dependency between meaning
and context, we can use context similarity to infer meaning sim-
ilarity. In concrete, most DSMs represent the meaning of a word
with a vector that keeps track of how many times the word has
occurred in various contexts in a corpus (where contexts are, e.g.,
documents or other words co-occurring with the target in a short
passage). Thanks to this representation of word meaning, DSMs
can quantify semantic relatedness with geometric methods, in
particular by measuring the width of the angle formed by the
vectors associated to the words of interest. A toy example illus-
trating the idea is sketched in Figure 1.

DSMs differ widely in terms of what counts as context, how raw
co-occurrence counts are weighted and whether dimensionality
reduction techniques are applied. Indeed, some famous DSMs in
cognitive science are derived by fixing some parameters in the
construction of semantic spaces. For example, LSA (Landauer &
Dumais, 1997) is a semantic space based on a word-document
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co-occurrence matrix, to which Singular Value Decomposition is
applied for dimensionality reduction; on the other hand, HAL
(Lund & Burgess, 1996) is built from word-to-word co-
occurrences, whose collection can be delimited by different win-
dow sizes. More recently, Neural Language Models (Collobert et
al., 2011; Mikolov, Chen, Corrado, & Dean, 2013) induce vectors
trained to predict contextual patterns, rather than directly encoding
them.

DSMs have several desirable properties as computational mod-
els of meaning for cognitive simulations. First, they induce mean-
ing from large amounts of naturally occurring linguistic data (the
source corpora), not unlike what children and teenagers must do to
acquire the huge vocabularies that adults command (of course,
although the input might be similar, nobody claims that the me-
chanics of DSM induction are plausible acquisition models; Lan-
dauer & Dumais, 1997). Second, DSMs can easily induce and
encode meaning representations for thousands or even millions of
words, making them very practical in the design of experiments
and simulations. Third, DSMs naturally provide a graded notion of
meaning (via the continuous similarity scores they produce), in
accordance with mainstream “prototype” views of lexical and
conceptual meaning (Murphy, 2002).

Indeed, DSMs have been found to be extremely effective in
simulating an increasingly sophisticated array of psycholinguistic
and lexical-semantic tasks, such as predicting similarity judgments
and semantic priming, categorizing basic-level nominal concepts
or modeling the selectional preferences of verbs (e.g., Baroni,
Barbu, Murphy, & Poesio, 2010; Erk, Padó, & Padó, 2010; Lan-
dauer & Dumais, 1997; Lund & Burgess, 1996; McDonald &
Brew, 2004; Padó & Lapata, 2007). As this aspect will be relevant
to our nonce form acceptability experiments below, we remark
that, although DSMs are mostly used to measure vector similarity
as a proxy to semantic relatedness, intrinsic properties of distribu-
tional vectors, for example, their length and entropy, have also

recently been shown to be of linguistic interest (Kochmar &
Briscoe, 2013; Lazaridou, Vecchi, & Baroni, 2013; Vecchi,
Baroni, & Zamparelli, 2011).

Not surprisingly, morphological processing scholars have seized
the opportunity offered by distributional methods, and it has be-
come almost standard to use DSMs to quantify the degree of
semantic transparency of derived or compound words in terms of
geometric distance of the morphologically complex form from its
stem (in derivation) or its constituents (in compounding). For
example, Rastle et al. (2000) used LSA to quantify the degree of
semantic relatedness between morphologically related primes and
targets in a study of visual word recognition (e.g., depart and
departure are semantically close, apart and apartment are far).
Other studies using LSA in similar ways include Diependaele,
Duñabeitia, Morris, and Keuleers (2011); Feldman et al. (2009);
Gagné and Spalding (2009); Rastle, Davis, and New (2004); Milin,
Kuperman, Kostić, and Baayen (2009); Moscoso Del Prado Martín
et al. (2005). Heylen and De Hertog (2012) used DSMs together
with other distributional cues to predict the degree of semantic
transparency of Dutch compounds. Working with English and
Chinese, Wang, Hsu, Tien, and Pomplun (2013) found good cor-
relations between constituent-to-compound similarities as mea-
sured by LSA and human transparency judgments. As a final
example, Kuperman (2009) found that operationalizing
constituent-to-compound semantic similarity in terms of LSA
scores led to reliable transparency effects in lexical decision
and eye-movement latencies.

Although the studies we just reviewed provide evidence for the
usefulness of DSMs in morphology, a crucial ingredient is miss-
ing. Standard DSMs provide representations for the words that
constitute the input and output of a morphological process (con-
sider and reconsider, contain and containment, etc.), but they have
nothing to say about the process itself, and the meaning of the
morphemes that trigger it (how does re- contribute to the meaning

Figure 1. In this toy DSM example, the target words automobile, car, and horse are represented by the vectors
on the left, recording the number of times they co-occur with the context terms runs and wheels in a hypothetical
corpus. The vectors are represented geometrically on the right, where we see that those for automobile and car,
that share similar contextual patterns, form a narrower angle (in real DSMs, the vectors would have hundreds
or thousands of dimensions).
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of reconsider). Without a way to model meaning composition in
word formation, traditional DSMs are rather poor semantic surro-
gates for the study of morphology.

A related issue arises when trying to scale DSMs to handle
meaning above the word level. DSM proponents have indeed been
interested, from the very start, in ways to derive the meaning of
phrases, sentences and whole passages from the combination of the
distributional representations of their constituent words (Landauer
& Dumais, 1997). However, despite the similar compositional
challenge, most of the approaches suggested for constituents above
the word do not adapt seamlessly to derivational morphology,
because they rely on the assumption that the input to composition
is a set of word-representing vectors (Guevara, 2010; Mitchell &
Lapata, 2010; Socher, Huval, Manning, & Ng, 2012; Zanzotto,
Korkontzelos, Falucchi, & Manandhar, 2010). For example, a
simple and surprisingly effective approach constructs the vector
representing the meaning of a phrase by summing the vectors of its
constituent words. The problem with extending this method to
morphological derivation should be clear. If we want to derive a
representation for reconsider, we can use the corpus-harvested
vector for consider, but how do we get a vector for re-, given that
the latter never occurs as an independent word? There are of
course ad hoc ways around this problem. For example, in Lazari-
dou, Marelli, Zamparelli, and Baroni (2013), we created a vector
for re- by simply accumulating co-occurrence information from all
words prefixed with re- in the corpus.2 However, such artificial
solutions are not required by the theoretically grounded functional
model we are about to introduce.

The functional approach to DSM composition was proposed by
Baroni and Zamparelli (2010) and further developed by Baroni,
Bernardi, and Zamparelli (2014) (Clark, 2013; Coecke, Sadrzadeh,
& Clark, 2010; and Grefenstette & Sadrzadeh, 2011, present a
closely related framework).3 The approach follows formal seman-
tics in characterizing composition as function application. For
example, an adjective modifying a noun (red car) is treated as a
function that takes the noun vector as input, and returns a modified
phrase vector as output. This naturally extends to derivation, where
we can think of, for example, the prefix re- as a function that takes
a verb vector as input (consider) and returns another verb vector
with an adjusted meaning (reconsider) as output. No independent
vector representation of affixes is assumed. This is the approach
we will pursue in this article.

Combinatorial Versus Full-Form Meaning

In the next section we will introduce our implementation of a
distributional semantic model equipped with a derivational com-
position component based on the functional approach. Of course,
a purely combinatorial procedure for morphemes is not the only
possible solution for the role of morphology in the mental lexicon,
and not necessarily the best one. It may be tempting to conceive a
semantic system populated by full-form meanings (i.e., separate
representations for run, runner, and homerun) and explain alleged
morphological effects as by-products of semantic and formal sim-
ilarity, and/or lexical links between related whole-word represen-
tations. This solution permits dealing with the idiosyncratic se-
mantics characterizing (to different degrees) nearly all complex
words. It can also handle cases where a complex form contains a
reasonably transparent affix meaning but the stem is not a word:

grocer4 clearly displays the agentive sense of -er, but to groce is
not a verb, so the noun cannot be derived compositionally.5 How-
ever, holistic meanings by themselves fall short in explaining the
surprising productivity of morphological systems. Native speakers
of a language are able to build new words by means of existing
morphemes, and people in the same linguistic community are
immediately able to understand the meanings of these novel con-
structs: herringless dish can be clearly assigned the meaning of
dish without herrings, even if the word herringless does not appear
in English dictionaries and it has likely never been heard before by
the listener. Any model of the semantic system should be able to
explain these phenomena, but to do so the cognitive architecture
needs some representation for morpheme meanings, as well as a
combinatorial procedure operating on them.

Assuming a combinatorial process does not exclude the possi-
bility that holistic meanings may also be stored in the semantic
system together with separate morphemic entries, and the phenom-
ena we discussed above indeed suggest that both full-form repre-
sentations and a combinatorial route are called for. This makes a
purely full-form meaning approach and a mixed one difficult to
disentangle from an empirical point of view. Still, providing a
computationally defined formalization of the combinatorial mech-
anism will permit one to assess to what extent the meaning of a
complex word can be predicted by systematic processes, and
conversely help to determine when a complex word really needs a
holistic meaning representation of its own.

A Distributional Model for Morpheme Combination

Distributional Semantic Space

We mentioned in the introductory section on distributional
semantics that DSMs greatly vary in terms of how co-occurrences
are defined and which mathematical transformations are applied to
the co-occurrence matrix (Turney & Pantel, 2010). We adopt here
a set of parameters that led to top performance in previous empir-
ical tests (e.g., Boleda, Baroni, McNally, & Pham, 2013; Bullinaria
& Levy, 2007, 2012). For model implementation we relied on the
freely available DISSECT toolkit (Dinu, Pham, & Baroni, 2013a).

We extracted co-occurrence data from the concatenation of the
widely used ukWaC (http://wacky.sslmit.unibo.it/), English Wiki-
pedia (http://en.wikipedia.org/), and BNC (http://www.natcorp.ox
.ac.uk/) corpora (about 2.8 billion tokens in total). The words in
these corpora have been automatically mapped to dictionary forms
and annotated with their parts of speech. As a consequence, in the
resulting DSM, (a) separate vector representations are stored for
homographs with different grammatical class (e.g., a vector for the
noun run and a vector for the verb run), and (b) different inflec-

2 Luong, Socher, and Manning (2013), more elegantly, learn vector
representations of morphemes within a recursive neural network architec-
ture trained to predict word n-gram contexts.

3 A first sketch of the functional approach was developed by Guevara
(2009) in the context of modeling derivational morphology, although
Guevara did not evaluate his method in quantitative terms.

4 We owe the example to David Plaut.
5 Although representing the whole-word meaning of grocer is out of its

scope, a compositional approach can still capture the general semantic
properties associated to the -er affix appearing in this form. For more on
this, see the General Discussion in the Novel Words section.
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tional forms are represented by the same vector (e.g., the occur-
rences of speak, speaks, and spoke are all used to construct a single
speak vector). In model building, we considered the top 20,000
most frequent content words (adjectives, adverbs, nouns, and
verbs), along with any lexical items used during the affix function
training phase (described in the next subsection).

Word-to-word co-occurrence counts were collected by impos-
ing a five-word context window, that is, each target word was
considered to co-occur with the two (content) words preceding and
following it. Window-based lexical co-occurrences, as in HAL,
have proven to be optimally performing in a number of semantic
tasks, and are also attractive for their simplicity in comparison with
collocates based on syntax-based links (e.g., Bruni, Boleda,
Baroni, & Tran, 2012; Sahlgren, 2008). Narrow-window collo-
cates (as opposed to the word-document co-occurrences used by
LSA) usually entail very close semantic and syntactic relations,
and this approach is hence expected to capture a more locally
based kind of semantic similarity, such as the one found in close
taxonomic relations (Sahlgren, 2006). This granular property of
the narrow-window approach is all the more attractive for our
purpose, because morphological derivation will typically change
meaning in rather subtle ways that might be missed by a coarse
context representation (e.g., -ly simply transforms an adjective into
an adverb, -er might add an agentive role, denoting someone doing
the action the verb stem describes).

Weighting schemes are usually applied to raw co-occurrence
counts to best capture the information they carry by down-playing
the role of chance co-occurrence. In the present study, we adopted
(nonnegative) Pointwise Mutual Information (PMI; Church &
Hanks, 1990), an information-theoretic measure of association
widely used in computational linguistics. Given target word t and
context word c, PMI is computed as follows:

PMI(t, c) � log
p(t, c)

p(t)p(c)

The measure compares the probability of co-occurrence of two
words estimated directly from the corpus with the probability of
those two words co-occurring by chance, and hence quantifies the
extent to which their co-occurrence is not random. Consider, for
example, the word pairs the � dog and dog � barks. Even if the �
dog is likely much more frequent than dog � barks, the PMI of
the � dog is much lower, because the association between the two
words is not meaningful: simply, the is so frequent that it is likely
to co-occur with any noun in the corpus. On the other hand, dog �
barks will have a high PMI score, because their co-occurrence is
far from being random, being based on the semantic and syntactic
association between the two words. The nonnegative version of
PMI we apply here (negative values are replaced by zeros) was
shown to lead to high-performance models by Bullinaria and Levy
(2007). Landauer and Dumais (1997) have speculatively related
such information-based association measures to the Rescorla-
Wagner formalization of discriminative learning (Rescorla &
Wagner, 1972). Indeed, the higher the PMI, the more informative
a context word will be, and informativeness of a cue (in this case,
the contextual collocate) is strongly associated to its discriminative
power: the, being associated to a large number of different words,
is not a good discriminative cue for any of them; on the other hand,
where barks occurs, the presence of dog is also expected. There-

fore, the information-weighted encoding of word co-occurrences
in DSMs is intuitively similar to the way organisms create simple
associations between phenomena. This similarity could explain
why DSMs perform so well as models for the human semantic
system.

Dimensionality-reduction techniques perform a mapping of the
data to a lower dimensional space while trying to preserve certain
properties of the original full-space representations (e.g., vari-
ance). This procedure makes the data matrix easier to handle, but
its purpose is not purely practical. Landauer and Dumais (1997)
consider the reduced dimensions as an analogue to abstract seman-
tic features emerging from the co-occurrence of superficial ele-
ments. This hypothesis was further developed by Griffiths,
Steyvers, and Tenenbaum (2007) with Topic Models. In their
proposal, dimensionality reduction techniques identify a set of
topics emerging from word distributions; word meanings (or gist)
can in turn be modeled as probability distributions across topics. In
place of the better-known Singular Value Decomposition (Lan-
dauer & Dumais, 1997) and Latent Dirichlet Allocation (Griffiths
et al., 2007) methods, in the present study we performed dimen-
sionality reduction by Nonnegative Matrix Factorization (NMF).
This technique leads to a significant improvement in model per-
formance (Arora, Ge, & Moitra, 2012; Boleda et al., 2013), and the
dimensions it produces have been shown to be comparable with
the interpretable topics of Topic Models (Dinu & Lapata, 2010).
On the basis of recent empirical results and without our own
tuning, we set the number of dimensions to 350.

The semantic space resulting from these operations is a set of
�20,000 350-dimensional vectors, each representing a word
meaning. These define a multidimensional space in which geo-
metric proximity can be treated as a proxy for contextual, and
hence semantic similarity. In concrete, semantic similarity is mea-
sured as the width of the angle formed by two vectors. More
technically, following standard DSM practice, we quantify the
angular distance between vectors by the cosine of the angle they
form (the narrower the angle, the higher the cosine, i.e., the more
similar the words being compared are expected to be). Given two
vectors a� and b� , their cosine is computed as follows:

cos(a�, b�) �
�i�1

i�n ai � bi

��i�1
i�n ai

2 � ��i�1
i�n bi

2

When all vector components are nonnegative, as in our case, the
cosine is also nonnegative, and it ranges from 0 for perpendicular
vectors to 1 for parallel vectors.

Inducing Functional Representations of Affixes

Using the distributional semantic space described above as our
starting point, we now proceed to build affix representations.
Following the functional approach in compositional distributional
semantics (Baroni & Zamparelli, 2010), affixes can be seen as
functions modifying the semantics of word stems to obtain new
meanings.

Specifically, Baroni and Zamparelli, for reasons of elegance,
interpretability and computational tractability, restrict composition
functions to the class of linear transformations (but see Appendix
B on the nature of this restriction), so that words or affixes
encoding functions can be represented by coefficient matrices, and
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function application corresponds to vector by matrix multiplication
(Strang, 2003). When an n-dimensional (row) vector is multiplied
by a n � n matrix, the output is another n-dimensional vector.6

The value in the i-th dimension of the output is a weighted sum
of all input vector dimensions, each multiplied by the correspond-
ing coefficients in the i-th column of the matrix. Thus, the matrix
representing an affix encodes how much each input vector dimen-
sion affects each dimension of the derived output representation.

Our affix-specific coefficient matrices constitute Functional
Representations of Affixes in Compositional Semantic Space
(FRACSSs), and suit derivational morphology particularly well:
not only are they in line with the view of affixes as functional
elements from descriptive and theoretical linguistics, but they are
also in accordance with psycholinguistic results indicating that, at
the semantic level, stems are accessed first and affix meaning
enters the picture only subsequently (e.g., Laine, 1999).

Let us clarify how FRACSSs operate with a toy example.
Assume that when the prefix re- attaches to an activity verb V it
has an iterative meaning, more or less to V again (cf. sing and
resing). When it attaches to an accomplishment verb such as open,
the meaning is instead restitutive: to reopen (the door) does not
imply that the door was ever opened before, just that it is no longer
closed (this account of the semantics of re- is so enormously
simplified as to be flawed; see, e.g., Lieber, 2004, for a more
nuanced story). Let us assume moreover that continuously is a
typical contextual feature of activity verbs, with high scores in
their distributional vectors, and similarly for completely in accom-
plishment verbs. We take the contextual feature again to be very
salient in verbs expressing iterative meanings, and back in resti-
tutive readings. Finally, let us assume that verbs live in a very
narrow six-dimensional space, where dimensions d1 and d2 pertain
to characteristics that are not affected by re- (e.g., how the actions
denoted by verbs are performed). Then, the re- FRACSS might
look as in Table 1. Each cell of this matrix states how much the
input dimension corresponding to a row label will affect the output
dimension in a column label: for example, the 0 in the second cell
of the first row tells us that the input d1 dimension has no effect on
the output d2 dimension. More important, the fifth and sixth
columns of the table contain the weights that the input vector
values will be multiplied by to obtain the output back and again
dimension values, respectively. In the case of back, the output
value will be magnified by summing to the input back value twice
the input completely value, and similarly for again with respect to
continuously. Table 2 shows how the FRACSS operates on hypo-
thetical sing and open vectors, illustrating how the same matrix

multiplication operation (equivalently: linear function application)
correctly emphasizes the iterative dimension of the first verb, the
restitutive dimension of the second. Realistic distributional vectors
and matrices will contain, of course, hundreds or thousands of cells
(in our semantic space, vectors have 350 dimensions, FRACSS
matrices 350 � 350 cells), allowing a much richer multivariate
representation of factors such as iterativity, and a much more
nuanced treatment of how input and output dimensions interact in
semantic transformations. It is worth remarking that FRACSS
matrices can also be seen as vectors in a higher dimensional space,
and possess meaningful semantic properties in their own right, for
example, similar affixes should have similar matrix representations
(Baroni et al., 2014; Baroni & Zamparelli, 2010).

The weights to fill the actual FRACSS cells are estimated from
corpus-extracted examples of input-output pairs of the relevant
function application using standard least-squares methods (Dinu,
Pham, & Baroni, 2013b). The intuition is that an affix is the carrier
of a transformation, so we want to learn its representation from
pairs that illustrate the transformation it carries through. To esti-
mate the re- FRACSS, for example, we might use corpus-extracted
distributional vectors of pairs such as �do, redo�, �think, rethink�,
and so forth. The re- FRACSS coefficients are set so that, on
average, when the example input vectors are multiplied by them,
they produce output vectors that are geometrically close to their
corpus-extracted equivalents (in the running example, weights are
set so that multiplying the do vector by the re- matrix will produce
a vector that is close to the corpus-extracted redo vector, etc.).
Once the FRACSS is estimated, it can of course be applied to
arbitrary vectors that were not part of the training examples to
generate new derived forms (e.g., the matrix in Table 1 might have
been estimated on examples such as �do, redo�, �think, rethink�, but
once its weights have been fixed it can be applied to the morpho-
logically simple vectors of Table 2—that were not used as training
data—to generate the corresponding prefixed forms).

If vector representations indicate how the usage of a certain
word is distributed over the set of contexts, FRACSSs, because of
the way they are estimated, will capture systematic patterns linking
two separate context distributions. For example, for the agentive
-er, FRACSS will represent the association between contextual
representations of certain actions (e.g., deal, run, drink, and drive)
and contextual representations of entities able to perform (or
usually performing) those actions (e.g., dealer, runner, drinker,
and driver). In the previous section, we proposed that a simple
learning process resulting in the storage of word-to-word associ-
ations is at the base of the induction of distributional models
(Landauer & Dumais, 1997). The same principle of development
of association between phenomena on the basis of statistically
reliable co-occurrence patterns is at the basis of FRACSS learning.
However, whereas in the case of word associations the processed
phenomena are words in context, FRACSSs capture association
between the “meanings” (distributions over contexts) encoded in
distributional vectors. In other terms, in the present proposal,
affixes are to be considered as high-order associations between the

6 For simplicity, we ignore in this exposition the intercept row, that
actually makes our matrices (n � 1) � n-dimensional. Nothing substantial
changes, but see the discussion at the end of the novel words section on
how the intercept might be interpreted as capturing the “average” meaning
of the derived forms sharing the same affix.

Table 1
Toy FRACSS Matrix Representing the Prefix Re-

d1 d2 Completely Continuously Back Again

d1 1 0 0 0 0 0
d2 0 1 0 0 0 0
Completely 0 0 1 0 2 0
Continuously 0 0 0 1 0 2
Back 0 0 0 0 1 0
Again 0 0 0 0 0 1

Note. Each column contains the weights determining the impact of each
input dimension (associated to the corresponding row label) on the value of
the output dimension corresponding to the column label.
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distributional semantics of different words (or, better, word sets).
These associations are hidden within natural language usage, but
may emerge when the apt statistical learning procedure is applied.

We trained FRACSSs for 34 affixes using the DISSECT toolkit
(Dinu et al., 2013a). Each affix was associated to a training set
composed by at least 50 stem/derived-form pairs, obtained by
exploiting the morphological annotation from the CELEX English
Lexical Database (Baayen, Piepenbrock, & Gulikers, 1995). The
pair elements matched the most common part-of-speech signature
for the corresponding affix (e.g., -er pairs had verbal stems and
nominal derived forms). For each pair, both elements occurred at
least 20 times in our source corpus. Appendix A reports a list of the
affixes together with information on the associated morpho-
syntactic transformations and number of training data used.

In principle, picking training examples from CELEX could have
reduced the naturalness of the experimental setup, by favoring
examples of productive, transparent, and/or synchronic affixation.
In practice, this was not the case. The CELEX morphological
segmentation was performed semiautomatically, and it is ex-
tremely liberal in parsing words as morphologically complex.
Indeed, most of the words typically included as opaque items in
priming experiments are tagged as morphologically complex in
CELEX (e.g., 61% of the opaque words in Rastle et al., 2000, and
71% of the opaque words in Marslen-Wilson, Bozic, & Randall,
2008). As a consequence, words like listless, department, corny,
seedy, whisker, audition, awful, virtual, and archer are included in
our training set. These forms show that picking training examples
from CELEX does not add much unintended supervision to the
setup. Essentially, it is equivalent to picking training examples by
using simple surface-based distributional heuristics that should not
be beyond the reach of human language learners, and have been
shown in many computational simulations to suffice in providing
reasonable parses of complex forms (see Goldsmith, 2010).

Examples of FRACSS-Derived Representations

Before we delve into the experiments that will bring quantitative
support to our approach, it is interesting to inspect, qualitatively,
the semantic representations of affixed forms composed with
FRACSS. The examples discussed here show how such represen-
tations mostly reflect the meanings that we would assign to the
corresponding derived forms, sometimes capturing surprisingly
nuanced details. We will see that the linear matrix-multiplication
approach we take, thanks to the flexibility afforded by representing
each separate affix with a different matrix and the interplay of
input vector dimensions and matrix weights, provides enough

room to learn representations that can capture affix polysemy, pick
the right sense of the stem, and handle different subclasses of
stems differently.

We conduct the qualitative analysis by inspecting derived-form
vectors constructed via multiplication of a stem vector by a
FRACSS matrix. For example, the cellist vector we will discuss
results from multiplying the cello vector by the -ist matrix. We
then assess what is the meaning that the model has produced by
looking at the nearest neighbors of the composed vector, that is, its
closest vectors (cosine-wise) in our distributional semantic space.
In particular, all the neighbors we discuss here are among the
nearest 20 to each composed form of interest, in a space containing
more than 20,000 items.7 The cases discussed here were picked as
good representatives of various phenomena, but they are by no
means exceptional with respect to the larger set of about 4,000
composed items (taken from the stimuli of the experiments below)
that we scanned when looking for examples.

We start with some cases illustrating how FRACSS representa-
tions capture different senses of the same affix. The -er matrix, for
example, produces an agent (V-er � X who Vs) meaning from
carve but an instrument one (V-er � X used for Ving) when the
input is broil. Consequently, among the neighbors of carver we
find a number of other craftsmen performing related activities, for
example, potter, engraver, and goldsmith. On the other hand, the
broiler neighbors are tools such as oven, stove, as well as other
words related to the function of broilers: to cook, kebab, and done.

Although many forms in -ment are ambiguous between a pro-
cess and a result interpretation (achievement as the act of achieving
vs. what has been achieved), with some stems one of the two
readings is much more likely. The FRACSS for -ment appears to
have captured the difference: For interment, the neighbors strongly
cue a process reading. There are verbs such as inter, cremate, and
disinter, as well as other nouns with a dominant event meaning:
burial, entombment, disinterment, and funeral, etc. On the other
hand, for equipment, where the result reading is more prominent,
we find neighbors that are clearly related to equipment as a set of
physical tools: maintenance, servicing, transportable, and deploy.

Marchand (1969), in his classic treatment of English morphol-
ogy, distinguishes between full of N and causing N senses of -ful,
that are indeed reflected in the -ful FRACSS. The neighbors of
careful cue the full of care sense: judicious, attentive, compassion-
ate, etc. Those of dreadful imply instead the correct causing dread
sense: frightful, horrible, unbearable, and so forth.

Although it is hard, based on nearest neighbor evidence alone, to
decide if the re- FRACSS is capturing the difference between the
main iterative and restitutive senses of the prefix, the difference
between the default iterative sense and some more marked intepre-
tations does emerge. So, for iterative reissue we clearly detect the
reference to a former issuing event in neighbors such as original,
expanded, and long-awaited. On the other hand, the neighbors of
retouch cue the strong presence of a “correction” sense: repair,
refashion, reconfigure, etc. The unusual intensifying sense of the

7 The semantic space where we search for neighbors contains only
vectors directly extracted from the corpus, also for derived forms. For
example, when we say that flutist is a close neighbor of (composed) cellist,
we mean that the vector we constructed from the corpus contexts of flutist
(as a whole word) is one of the nearest—the nearest one, actually—to the
vector we constructed multiplying the cello vector by the -ist matrix.

Table 2
Toy Distributional Vectors Before and After Multiplication by
the Re- FRACSS Matrix in Table 1

d1 d2 Completely Continuously Back Again

Sing 3 2 0 2 0 0
Re-sing 3 2 0 2 0 4
Open 1 3 1 0 1 0
Re-open 1 3 1 0 3 0

Note. Words associated to vectors in the row labels, contextual dimen-
sions in the column labels.
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prefix is also captured, as shown by the neighbors of resound:
reverberate, clangorous, echo, and so forth.

Other cases highlight how a FRACSS can pick up the right
sense of a stem even when the latter is unusual. For example, the
nearest neighbors of the noun type indicate the prominence of the
computational and “typing” senses: keyword, subtype, parse, etc.
However, -ify correctly selects the “characteristic example” sense
in typify, compare neighbors such as embody, characterize, and
essentially (more distant neighbors such as codify and subsume
suggest that the, now secondary, computational sense has also
been preserved). The architectural and mathematical senses dom-
inate the neighbors of column: arch, pillar, bracket, numeric, etc.
However, -ist correctly emphasizes the journalistic sense in col-
umnist, compare nearest neighbors such as publicist, journalist,
and correspondent.

Beyond columnist, the -ist suffix possesses many nuances that
are accurately captured by its FRACSS. Therefore, a cellist is
someone who plays the cello (neighbors: flutist, virtuoso, quintet,
etc.). An entomologist on the other hand is an expert of entomol-
ogy, which is quite near the disciplines of her or his neighbors:
zoologist, biologist, botanist, etc. For propagandist, we get the
right connotation of devotion to a political cause, that the suffix
carries when combined with the relevant class of stems (nearest
neighbors: left-wing, agitator, dissident, etc.). As a final example,
a rapist belongs to the felon class of -ist derivatives, with nearest
neighbors such as extortionist, bigamist, and arsonist (and, among
the neighbors that do not contain -ist, pornographer, criminal, and
pimp).

The same stem vector might produce quite different derived
vectors when multiplied by different FRACSS. Among the nearest
neighbors of industrial, for example, we find environmental, land-
use, and agriculture, whereas among those of industrious we see
frugal, studious, and hardworking.

In all the examples above, the patterns induced by FRACSS
might be very specific, but they still have some degree of syste-
maticity: For example, the need to account for the corpus-observed
contexts of terms such as essayist, journalist, and novelist during
the matrix estimation phase (see section on training FRACSS
above) must have led to the -ist FRACSS matrix encoding the
correct generalization for columnist. These semantic subregulari-
ties resemble the islands of reliability described by Pinker and
Prince (1988) and Albright and Hayes (2002) for the phonological
side of morphological combination. In their models, very general,
“regular” morphological rules (such as “append -d to form past
participle”) are accompanied by rules that capture more specific,
yet still reliable subregularities for the very same change (such as
“change root i to u if word ends in -ng”—cf. sting/stung, sing/
sung, etc.). Similar ideas are also being explored in syntax, where
certain constructions (e.g., the English resultative, cf. Goldberg &
Jackendoff, 2004) are treated as families of subregularities.
Clearly, when moving to the semantic level, the boundaries of
these islands or families are fuzzier and difficult to define, because
they are represented as distributions across different semantic
dimensions. Still, FRACSSs seem flexible enough to capture such
subtle semantic regularities across words.

When the dominant meaning of a derived form is heavily
lexicalized and not part of a (semi-) systematic pattern, FRACSS
composition will produce an alternative, more semantically trans-
parent interpretation of the same form. For example, among the

nearest neighbors of the nervous vector directly extracted from the
corpus, we find anxious, excitability, and panicky. On the other
hand, the nearest neighbors of nervous composed by multiplying
the nerve vector with the -ous matrix include bronchial, nasal, and
intestinal. We find this duplicity a desirable aspect of our model,
because, for humans as well, it is likely that the dominant meta-
phorical meaning of nervous is also learned holistically and stored
with the whole word, whereas the medical sense can be generated
compositionally from the nerve stem (Amenta, Marelli, & Crep-
aldi, in press). We will see below how the possibility of generating
compositional meanings for lexicalized forms might play a role in
explaining semantic transparency effects on priming.

The examples in the present section speak for the flexibility of
the functional approach in capturing a wide range of phenomena,
including affix and stem polysemy, affix-stem interactions and -to
a certain degree- opaque derivations. This large degree of flexi-
bility is ensured by the affixation procedure being modeled as
vector-by-matrix multiplication: each single dimension of the
derived-form is the result of a multipliticative combination of a set
of affix-specific weights with the whole dimension distribution of
the stem. Therefore, it is possible that, given different stems, the
same dimension in the corresponding derived forms will be at
times emphasized, at times inhibited (remember that each dimen-
sion, in the current approach, encodes a semantic trait). This
implies that, for example, the different possible “senses” that an
affix can express in a derived form will be crucially determined by
the stem it combines with (see the toy example in Tables 1 and 2).
In other words, semantic distinctions in the affixation process can
depend on (more or less nuanced) distributional patterns in the
stems. This very system can also explain (some) cases traditionally
considered opaque: fruitless and heartless have “opaque” mean-
ings because fruit and heart have the relevant secondary senses
encoded in their distributional representations to begin with (e.g.,
“the fruits of their labor,” “that man has a big heart”).

Distributional Representations of Novel
Derived Words

Our model constructs the semantic representation of a derived
word by means of a compositional process that transforms the
meaning of its stem through FRACSS application. The model can
build semantic representations for novel words (or nonce forma-
tions), expressing meanings that are not yet lexicalized in the
language. Because the generation of new words must be one of the
core reasons why morphological derivation exists, and the new
word creation process must be largely compositional, nonce for-
mations represent a natural testing benchmark for our model.
Previous psycholinguistic studies of novel complex words have
mostly focused on the factors underlying their acquisition (e.g.,
Tyler & Nagy, 1989) or quantitative aspects associated with mor-
phological productivity (e.g., Hay & Baayen, 2002). We present
here two investigations aimed at modeling the degree of meaning-
fulness of novel words and assessing the quality of the vector
representations our method generates for them.

Meaningfulness of Novel Forms

We focus first on a fundamental but essentially unexplored
characteristic of new complex words, namely whether they are
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meaningful or not. Although semantics is not the only factor
constraining word derivation (nonce forms might also be unac-
ceptable, e.g., because of morphophonological or lexical strata
constraints), it certainly plays an important role by imposing
selectional restrictions on the stems an affix can combine with. For
example, because the prefix re- conveys an idea of iteration or
going back to a previous stage, to redie sounds rather strange.
Often such restrictions do not lead to sharp judgments, but rather
to intuitions laying on a scale of relative acceptability. For exam-
ple, in the survey we describe below, subjects found nonce forms
such as rebrowse and reappend perfectly meaningful, they as-
signed intermediate ratings to forms such as reprovoke or rewon-
der, and strongly disliked redecease and rematter. Therefore,
modeling meaningfulness should be a task well-suited for compo-
sitional DSMs, which provide continuous scores predicting de-
grees of meaningfulness as we will describe next.

Previous studies have shown that the meaningfulness of novel
word combinations (phrases) is efficiently captured by quantitative
properties of their distributional representations. We apply the
properties that were used by Lazaridou, Vecchi, and Baroni (2013)
to quantify the semantic acceptability of phrases (in turn adapted
from Vecchi et al., 2011) to novel derived forms. Specifically, the
measures proposed by Lazaridou and colleagues were computed
here on novel word vectors derived by FRACSS application to the
corresponding stem representations.

Neighborhood density measures how close, on average, a word
vector is to the vectors of its nearest neighbors in distributional
semantic space. The rationale for this measure is that a vector
encoding a meaningful new concept should live in a region of
semantic space that is densely populated by the vectors of many
related concepts that have already been lexicalized, whereas a
vector denoting something that makes no sense should be quite far
from the vector of any concept meaningful enough to have been
lexicalized. It is easy to think of concepts related to the nonce word
acneless (a form deemed meaningful by our participants), such as
pimple, teenager, lotion, and so forth. On the other hand, it is hard
to assign a precise, fixed sense to hikeless (a form that received
low ratings), and consequently no related concepts spring to mind.
This intuition is illustrated graphically at the top left of Figure 2.
Formally, if ni(t) is the i-th nearest neighbor of a target nonce form
t, then density(t) is computed as follows:

density(t) �
�i�1

i�N cos(�t, n�i(t))

N

where N, the number of top nearest neighbors to be considered, is
a free parameter. Following Lazaridou and colleagues, we set it to
10 without tuning (i.e., density is operationalized as the average
cosine of the target item with its 10 nearest neighbors).8

Stem proximity is the cosine of the derived-form vector with the
vector of its stem. This measure captures the intuition that, in
productive word formation, if the derived form has a radically
different meaning from that of its stem, something went wrong,
because a nonce derived word should never be semantically
opaque. If I produce the complex word windowless (high ratings),
I do it because I expect my reader or listener to be able to
transparently recover its meaning from that of window. Consider
instead windowist (low ratings): here, it is difficult to see in which
way the meaning of window should contribute to the meaning of

the derived form. This intuition is illustrated graphically at the top
right of Figure 2. Note that stem proximity has also been used to
estimate the degree of semantic transparency of existing derived
forms, and we will extensively use it for that purpose below. Here,
however, the interpretation changes: whereas an existing derived
form that is far from its stem is likely to have developed a different
meaning through its usage, a nonce derived form cannot have an
idiosyncratic meaning. Thus, if it is semantically far from its stem,
this is a likely cue that derivation broke down. Formally, given
distributional representations of a target derived form t and its stem
s (such that t � d(s) for some derivation process d()), stem
proximity is simply the cosine:

proximity(t) � cos(�t, s�)

Finally, the entropy of a vector is lower when it has a skewed
distribution with just few dimensions having large values, higher
when the distribution tends to be uniform (see, e.g., Cover &
Thomas, 2006). Because, as discussed in the section on distribu-
tional semantic space construction above, the dimensions of dis-
tributional vectors, alone or in clusters, cue different semantic
domains or “topics,” a high-entropy (i.e., uniform) vector does not
carry any specific meaning. Thus, we expect an inverse correlation
between entropy and meaningfulness. If there is little doubt that
the highly rated nonce word musketless pertains to the domain of
military matters, it is hard to associate sludgist (low ratings) to any
specific semantic domain, as we do not know what this word is
about. This intuition is illustrated graphically at the bottom of
Figure 2. Independent evidence that entropy should correlate with
acceptability comes from the observation that attested derived
words (that are all, presumably, meaningful to a certain degree)
have much lower entropy than derived nonce forms (that are likely
to contain a mixture of sensible and meaningless formations).
Specifically, the entropy range in a sample of 900 existing derived
words (taken from the materials of the semantic transparency
experiments we will discuss below) is 2.01–4.51 (mean � 3.27,
SD � .39), whereas the nonce forms of the present experiment
have an entropy range of 4.77–5.58 (mean � 5.34, SD � .18), with
no overlap between the two sets.

Formally, if t1 . . ., tk are the values in the K components of the
distributional vector of a target nonce form t, its entropy H(t) is
computed as follows:

H(t) � logK �
1

K�
i�1

i�K

tilogti

Note that entropy is defined for vectors encoding probability
distributions, that cannot contain negative values. Our vectors,
obtained by Nonnegative Matrix Factorization of the co-
occurrence matrix, satisfy this condition.

Materials and method. We focused on the four suffixes and
two prefixes presented in Table 3. The affixes were selected
among those for which we trained FRACSSs, as described above.
These affixes are all reasonably productive according to the quan-
titative indices reported by Hay and Baayen (2002), and they are

8 We considered the top 20,000 most frequent content word lemmas in
our corpus as potential neighbors. Virtually the same results were obtained
when the candidate neighbor set was expanded to include all derived forms
used in the experiments.
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not subject to strict morphophonological or lexical strata con-
straints according to Marchand (1969). We observe in passing that
none of the quantitative productivity indices reported in Hay and
Baayen (2002) correlates significantly with the average meaning-
fulness scores for our affixes, indicating that semantic acceptabil-
ity (a property of specific derived words) cannot be reduced to
productivity (a property of word formation processes).

For each of the target affixes, we automatically generated de-
rived forms by attaching the affix to a stem of the appropriate
syntactic category (e.g., -able was only attached to verbs). Stems
had to occur at least 2,500 times in our reference corpora. Ortho-
graphic rules where semiautomatically applied where appropriate
(e.g., the final -e of demote was deleted before appending -er).

We randomly sampled 100 derived forms per affix, manually
excluding those that might sound strange for reasons independent
of semantics (e.g., rereprocess because of the repeated prefix). We
checked, moreover, that the candidate nonce forms never occurred
in our very large corpus, also considering spelling (dash/no dash,
English/American, etc.) and inflectional variants. We cannot of
course guarantee that all forms were absolutely novel to all our
subjects, but it is highly unlikely that any of them would have
heard or produced more than a few times a derived form that never
occurs in a corpus of 2.8 billion words.

The resulting set of 600 derived nonce forms was annotated to
mark the degree of meaningfulness of each item by means of a
crowdsourcing study. Crowdsourcing is an online survey method
increasingly used in the cognitive sciences to collect large amounts
of data (Schnoebelen & Kuperman, 2010). Here, crowdsourcing
was used to reach a larger and more diverse population than the

one usually taking part in psycholinguistic experiments. Partici-
pants were recruited from Amazon Mechanical Turk through the
CrowdFlower platform (http://www.crowdflower.com). Partici-
pants were asked to rate each item on the basis of how easy it was
to assign a meaning to it, using a 5-point scale ranging from almost
impossible to extremely easy. In the instructions, we specified that
there was no right answer, and we stressed that we were specifi-

Table 3
Affixes Considered in the Experiment

Affix Stem ¡ Derived

Mean
acceptability

(SD) Examples

-able V ¡ A 3.82 (0.51) High: sketchable, harassable
Low: dawnable, happenable

-er V ¡ N 3.82 (0.42) High: surpasser, nicknamer
Low: relenter, pertainer

-ist N ¡ N 3.18 (0.52) High: hologramist, liaisonist
Low: windowist, rasterist

-less N ¡ A 3.64 (0.44) High: acneless, musketless
Low: eaterless, rinkless

re- V ¡ V 3.52 (0.45) High: reappend, reinsult
Low: relinger, rematter

un- A ¡ A 3.46 (0.46) High: undiligent, unheartfelt
Low: unthird, unmessianic

Note. Affixes in the novel word meaningfulness data set, with syntactic
categories of input stems and output derived forms (A � adjective; N �
noun; V � verb), mean acceptability scores across derived forms contain-
ing the affixes, and examples of forms with high and low meaningfulness
scores.

Figure 2. Visual intuitions for the meaningfulness measures. Top left (density): the vector of a meaningful
derived form such as acneless has closer neighbors than a less sensible form such as hikeless; top right (stem
proximity): the vector of a sensible derived form such as windowless is closer to the stem than that of a less
sensible form such as windowist; bottom (entropy): looking at distributional vectors as probability distributions
(darker shades � higher probabilities), a good form such as musketless has most of its probability mass
concentrated on few dimensions (low entropy), the probability mass of a less sensible form such as sludgist is
uniformly spread across many dimensions (high entropy).
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cally interested in the meaning of the new words; participants were
invited to ignore spelling considerations, and consider alternate
spellings if they made the words appear more natural. Each novel
words was evaluated by 10 different participants (that had to
declare to be native speakers of English). Average ratings were
then computed for each item.9

Ten items were excluded from the analysis because of technical
reasons. The third column of Table 3 reports average meaningful-
ness ratings across the forms with each affix and the corresponding
SDs. We observe relative high ratings (associated with a general
rightward skewness in the distribution), and some limited variation
across affixes. However, we also observe some significant vari-
ance around each affix average, confirming that semantic accept-
ability cannot be explained away by properties of the affixes,
without considering the specific stems they attach to.

Results. The judgments were analyzed in a mixed-effects
model (Baayen, Davidson, & Bates, 2008) using the measures
described above (neighborhood density, stem proximity, and vec-
tor entropy) as predictors. In addition, we introduced (log-
transformed) stem frequency as a covariate, to account for the
influence of stem familiarity on participants’ intuitions. Affix-
associated random intercepts and random slopes (for all predictors)
were also introduced, to partial out affix-specific effects. We
considered moreover quadratic terms, finding that only for stem
proximity this form of nonlinear modeling improved the fit. All
predictors were mean-centered to ensure more reliable parameter
estimation.

Table 4 presents the results for the fixed effects in the regression
analysis. The parameter associated with density was removed
because it did not significantly contribute to the model goodness-
of-fit. p values were computed adopting the Satterthwaite approx-
imation for degrees of freedom (Satterthwaite, 1946) as imple-
mented in the lmerTest R package (Kuznetsova, Brockhoff, &
Christensen, 2013).

The effects of entropy, stem proximity, and stem frequency are
represented in Figure 3. Entropy has a negative effect on mean-
ingfulness: the more entropic the vector, the less easy it is to
understand a novel word. Stem proximity predicts the highest
semantic acceptability at intermediate scores (about .4), and pro-
gressively lower ratings for more extreme proximity values. A
trend for the effect of stem frequency also emerged, but failed to
reach significance.

Discussion. As expected, vector entropy has a negative effect
on meaningfulness judgments. High-entropy (i.e., more uniform)
vectors fail to identify specific meanings, making the correspond-
ing novel words harder to interpret than their low-entropy coun-
terparts.

The nonlinear effect of stem proximity is more surprising, but it
makes sense when considering that novel words are meant to carry

new meanings: affixation is expected to modify the core meaning
of the stem enough for the new word not to be superfluous. Among
the forms with the highest proximity values in our data we find
opticianist and scholarist, both receiving low ratings. Arguably,
the problem with these forms is that the -ist prefix attached to a
profession name is redundant: opticianists and scholarists proba-
bly would do exactly what opticians and scholars do, which our
model captures by high stem proximity. At the other extreme of the
proximity scale, we find two more forms in -ist with low subject
ratings, namely sludgist and windowist. The problem here is not
redundancy, but that it is not clear how sludgists and windowists
would “specialize” in sludge and windows, respectively. The
model accounts for this by assigning very low proximity to these
forms, as if to mark the fact that their relation to the stems is
obscure. In conclusion, a novel word should be far enough from its
stem to avoid redundancy, but not so distant that the new meaning
is no longer interpretable. This pattern is captured by the nonlinear
effect of stem proximity on meaningfulness.

Proximity and entropy are not statistically associated, and are
probably capturing different aspects of novel word meaning:
whereas entropy is diagnostic of topic-specificity of the novel
concept, proximity indicates to what extent the derived meaning
differentiates itself from the original stem.

Regarding the lack of a density effect, we observe first that this
measure has a relatively high correlation with entropy (r � .36). In
post hoc analyses, we regressed entropy on density and vice versa,
entering the residuals of one measure (residualized entropy or
density) together with the other as uncorrelated predictors. Al-
though entropy was consistently a significant predictor, density
only reached significance when entropy was residualized. The
overall pattern suggests that density does not account for accept-
ability judgments beyond what is already explained by entropy,
and the latter is a stronger predictor. Note that our current opera-
tionalization of density might fail to capture the intuition we gave
for this measure. In particular, the current implementation only
takes into account the distance of the derived form to its nearest
neighbors, but the relation of these neighbors to each other (are
they also close, making the neighborhood truly “dense”?) is not
taken into account.

As it is not the focus of the current study, we leave a more
in-depth investigation of the specific measures we picked, and in
particular density, to further studies. For our current purposes, the
important result presented in this section is that quantitative prop-
erties of our compositionally derived vectors are able to capture a
significant portion of the variance in semantic intuitions about
nonce derived forms, even when other factors such as stem fre-
quency and affix type are considered.

Quality of Novel Form Vector Representations

In the previous experiment, we have tested to what extent
quantitative aspects of the vector representation of a novel word
are able to predict its perceived meaningfulness. As an added
benefit, the survey we ran produced a list of novel derived forms

9 The data collected on nonce words can be downloaded from http://clic
.cimec.unitn.it/composes/FRACSS/. We hope these data sets will foster
further research on the factors determining semantic acceptability of de-
rived forms.

Table 4
Fixed Effects in the Analysis of Novel Word Meaningfulness

Predictor Estimate SE t p

Intercept 3.62 0.13 28.43 .0001
Stem frequency 0.05 0.02 2.22 .0801
Stem proximity (linear) 0.78 0.29 2.65 .0388
Stem proximity (quadratic) �3.39 0.89 �3.78 .0002
Vector entropy �0.91 0.13 �3.75 .0008
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that participants rated as highly meaningful. We can now use this
subset to look into the quality of composed novel word represen-
tations more directly.

In particular, following Lazaridou, Marelli et al. (2013), we
assume that the semantic quality of a distributional vector is
reflected in its semantic neighborhood. A good vector representa-
tion of a word should live in a region of the semantic space
populated by the vectors of intuitively related words; for example,
a vector can more convincingly be said to have correctly captured
the meaning of car if it places it closer to automobile than potato.
We extend this approach to novel words, asking participants for
relatedness judgments about the neighbors of the corresponding
vector representations.

Materials and method. Neighbors were extracted from our
reference semantic space (described in the section on model de-
velopment) on the basis of the vector representations for novel
words obtained using FRACSSs. We focused on 236 novel forms,
which received an average meaningfulness rating of at least 4 in
the previous study, and their top 10 nearest neighbors. From this
set, we had previously filtered out words that were overly repre-
sented across neighborhoods (i.e., occurring in the top neighbor
lists of more than 10% of the considered forms; Radovanović,
Nanopoulos, & Ivanović, 2010). These shared elements were
poorly informative of the specific novel forms under analysis,
because they were primarily connected to the affix meaning,
independently of the stem: they were affixed words found in the
neighborhoods of many words with the same affix, and some of
them were nearly synonymous to it (e.g., unlike for un- forms,
manageable for -able forms).

We randomly selected up to five neighbors for each nonce form,
resulting in a set of 853 neighbors, each contrasted with the
corresponding novel form. Each neighbor was also assigned two
control items, namely the stem of the nonce form and an unrelated
baseline word. Baseline words were randomly chosen from the
whole set of words in the semantic space, pending that they were
reasonably different from both the stem and the nonce form they
were assigned to (cosine similarity less than .30). Therefore, the
final item set included 2,559 pairs, organized into three conditions:
in the nonce form condition, nonce-form neighbors were con-
trasted with the corresponding nonce forms (blameworthy-apolo-
gizable); in the stem condition, nonce-form neighbors were con-

trasted with the stems of the corresponding nonce forms
(blameworthy-apologize); in the random condition, nonce-form
neighbors were contrasted with unrelated random words
(blameworthy-blazer). Stimulus examples are given in Table 5.

The resulting set was annotated in a crowdsourcing study to
mark the degree of semantic relatedness for each pair. Participants
were recruited from Amazon Mechanical Turk through Crowd-
Flower and asked to rate each pair using a 7-point scale ranging
from 1 � completely unrelated to 7 � almost the same meaning.
In the instructions, we warned participants that some of the words
could be unknown to them, but pointed out that those very terms
were made up of portions of existing English words (e.g.,
quickify � quick � ify), and conveyed a meaning that could be
evaluated. Each pair was rated by 10 different participants (re-
quested to be native speakers of English). Average ratings were
then computed for each pair.

Results. The judgments were analyzed in a mixed-effects
model using the experimental condition as predictor. The condition
of interest (nonce-form) was modeled as reference level. Random
intercepts for both terms of each pair were included in the model.
Average ratings in the nonce form condition (mean � 2.41,
SEM � 0.03) are significantly larger than those in the random
(mean � 1.87, SEM � 0.02, t � �14.44, p � .0001) and stem
(mean � 2.19, SEM � 0.02, t � �5.81, p � .0001) conditions.

Table 5
Examples of Novel-Form Neighbors That Were Rated More
Similar to the Novel Forms Than to the Corresponding Stems

Neighbor Nonce form Stem Random

Redo Refinalise Finalise Sip
Curable Counteractable Counteract Wedding
Reprehensible Insultable Insult Meat
Waterproof Soakable Soak Email
Propagandist Provocationist Provocation Joystick
Doubter Disagreer Disagree Palsy
Accountant Leverager Leverage Ulceration
Defenceless Garrisonless Garrison Qualitative
Barren Pastureless Pasture Authenticate
Greyness Sunlightless Sunlight Incitement
Flawed Unsuperior Superior Headstone

Figure 3. Partialized effects of vector entropy (a), stem proximity (b), and stem frequency (c) on meaning-
fulness judgments of novel words.
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Discussion. We evaluated the quality of the vector represen-
tations of meaningful novel words constructed by FRACSS appli-
cation. We focused on the semantic-space neighbors of these
vectors, and had them judged by participants in a crowdsourcing
study. Crucially, similarity ratings between nonce forms and the
produced neighbors were higher than those in two control condi-
tions.10

First, the neighbors of a nonce form were deemed to be closer
to the nonce form itself than to an unrelated control word. This
confirms that that the region in semantic space individuated by the
nonce form vector is far from random, being populated by words
that native speakers consider semantically related to the unfamiliar
derived term. Second and more importantly, the neighbors of a
nonce form were deemed to be closer to the nonce form itself than
to its stem; this result further supports the reliability of the ob-
tained vectors as representations for novel derived words, indicat-
ing that the compositional procedure does not produce simple
replicas of stem meanings, but can capture the specific semantic
connotations springing from the derivational process. Table 5
reports some examples of neighbors that were rated more similar
to nonce forms than to their stems. We observe a variety of
patterns that link the novel derivation to its neighbor, forming a
tighter semantic connection than with the stem. The negation effect
of -less in pastureless brings this form near barren. In a case like
disagreer/doubter, both derived-form and neighbor are agents
rather than events. For soakable, we get the antonym waterproof,
and so on.

General Discussion of the Novel Word Experiments

As first benchmark test for the proposed compositional model,
we used FRACSSs to generate distributed semantic representa-
tions for novel derived words, namely stem-affix combinations
that are unattested in a very large corpus and are hence likely to be
unfamiliar to most speakers. The representations that we obtained
provide a compact computational model of what happens in the
semantic system when a speaker has to understand the meaning of
an unknown complex word. The procedure can be summarized as
follows: the distributional pattern associated to the meaning of a
familiar word (the stem) is modified through the application of a
function, in the form of the affix FRACSS; the FRACSS acts on
the basis of systematic statistical relations that the affix entertains
in language usage (as experienced by the speaker and here cap-
tured by corpus counts); because of the nature of FRACSS repre-
sentations and function application, each dimension of the result-
ing distributional pattern will be influenced by all the dimensions
of the original stem vector, with different FRACSS weights for
each affix and unit in the output distribution, hence granting highly
flexible results. Indeed, the newly obtained distributional pattern
has a series of properties that can be meaningfully quantitatively
characterized, and can be compared with those of existing, familiar
words to identify its semantic connotation.

In the first experiment, we showed that the perceived meaning-
fulness of a novel word is predicted by the properties of FRACSS-
generated distributions. More meaningful forms have less entropic
representations, which is, the distribution they display is less
uniform, with a few dimensions being particularly active with
respect to the others. Because each dimension in a vector repre-
sentation can be associated to a semantic domain (Griffiths et al.,

2007), a less entropic distribution cues a novel word with a more
specific meaning. More informally, an unknown derived word is
considered more meaningful if it elicits a clear sense in the mind
of the speaker, and entropy computed on the FRACSS-generated
vector is a good predictor of this sense clarity. Perceived mean-
ingfulness was also predicted by the proximity of the newly
obtained representations to the familiar stem, a measure of the
extent to which the distributional semantic representation of the
stem is transformed by affixation. If this transformation is too
extreme, the relation to the stem is lost, and it becomes difficult to
assign a meaning to the new word. On the other hand, low
meaningfulness judgments are also obtained in cases in which
FRACSS application is nearly transparent, hardly affecting stem
representation. Arguably, in this case, the affixation procedure is
perceived as redundant. Meaningful novel words must be distant
enough from their stems to usefully encode a different meaning,
but not so distant that their meanings can no longer be recovered.

It is worth emphasizing that the training sample on which
FRACSSs are based does not provide direct examples of different
degrees of meaningfulness: it includes familiar and relatively
frequent words, all expected to be highly meaningful. Indeed,
meaningfulness becomes a sensible testing ground only after we
obtain new word representations through the compositional pro-
cedure. In other words, meaningfulness is predicted by properties
of the newly obtained complex words, which crucially emerge as
a by-product of the combination between a stem vector and an
affix matrix (neither of them intrinsically informative about word
meaningfulness).

Through the survey conducted in the first experiment, we ob-
tained a list of nonce derived forms that were deemed meaningful
by participants. In the second experiment, hence, we could directly
evaluate the quality of their FRACSS-based representations by
considering which familiar (existing) words “resonate” with their
distributional patterns, that is, have vectors that are close to the
distributional representations of the novel forms. If the composi-
tionally obtained novel representations capture the meanings that
speakers assigned to the corresponding novel forms adequately, we
expect their neighbors to be words that are semantically related to
them also according to speakers’ judgments. Indeed, participants
found automatically extracted neighbors of novel forms closer in
meaning to the novel forms themselves than to random control
words or to the novel word stems. This latter evidence is particu-
larly important because it indicates that the compositional proce-
dure based on FRACSS is generating representations that capture
the peculiarities of novel derived forms over and above the mean-
ing of their stems.

To sum up, FRACSSs provide a good model for the semantic
processing of novel morphologically complex words, paving the
way to a thorough understanding of the main determinants of
meaning construction in new morpheme combinations.

We conclude this section with preliminary data that show how
our system might produce broadly sensible guesses about the
meaning of a novel affixed form even when the stem of the form

10 The average ratings were somewhat low in absolute terms, but this
only reflects the difficulty of producing judgments about unfamiliar words.
Indeed, the values are similar to those obtained by Lazaridou, Marelli et al.
(2013) for similarity judgments between low-frequency existing words and
their neighbors.
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itself is novel, simulating the “wug” test (Berko, 1958), in which
children or adults are asked to productively attach affixes to
nonlexical stems. Typically, morphophonological or orthographic
properties of the derived form are investigated (“This is a wug.
Now there is another one. There are two of them. There are two
. . . wug[z]”). However, we expect wug words to also come with
a certain degree of semantic expectation. Even if we do not know
what zibbing is, we can guess that a zibber is either a person who
zibs or a zibbing tool. Essentially, in this case, a speaker must
resort to the general semantic properties of the affix to deduce part
of the meaning of the derived form—the part associated to the
affix.

As a result of the standard least-squares estimation procedure, a
FRACSS matrix contains an intercept vector encoding the aver-
aged contextual distribution (hence, the distributional meaning) of
all derived forms that were used for training. This intercept vector
should be a reasonable proxy of “zibber” words, because all we
can deduce about zibbers is that they must do what, on average, -er
derivations do. Indeed, we find that the FRACSS intercepts of
productive affixes are associated to semantic neighbors that con-
tain the relevant affixes. By using such intercepts to represent
zibber words, we naturally capture the fact that, if all we know
about the meaning of a form is that it contains an affix, we can only
guess that its meaning will be related to that of other forms
containing the affix. Considering the most productive affixes in
Hay and Baayen (2002) (i.e., those with type frequency above
400), the affix -y is found in 19 of the top 20 neighbors of the -y
intercept; the affix -er is found in 11 of the top 20 neighbors of the
-er intercept; the affix -ness is found in 19 of the top 20 neighbors
of the -ness intercept and the affix -ly is found in all of the top 20
neighbors of the -ly intercept. Moreover, even those neighbors that
do not directly contain the affix, typically are associated to it at the
meaning level: many neighbors of the -er intercept, for example,
denote professions (compositor, salesman, and projectionist), sug-
gesting that the agentive meaning of the suffix dominates its
semantic neighborhood.

This pilot experiment suggests how FRACSSs could capture
aspects of the affixes they represent also when applied to seman-
tically void stems. Besides making predictions about wug deriva-
tion, a similar approach might be used for existing words, such as
grocer, that have an active affix attached to a nonlexical stem.
Although the grocer whole-word meaning should be represented
holistically, a combinatorial procedure would still be able to cap-
ture the affix traits through the FRACSS intercept.

Modeling Semantic Transparency Effects

In the previous section, we have shown how the composition-
based approach to distributional semantics can be profitably used
to generate meaning representations for novel words. The question
arises whether the same compositional methods also have a role to
play when familiar derived words are processed. From a theoret-
ical point of view, if the compositional procedure works for
accessing the meaning of novel forms, it is not clear why it should
be blocked when processing other derived forms. Such conjectured
routine application of a combinatorial semantic procedure presup-
poses a systematic activation of morphemic units: for composition
to operate at the semantic level, morphemes need to have been
previously activated (Rastle & Davis, 2003, 2008). Moreover, for

composition to be applied to any string potentially containing
morphemes, morphemic parsing needs to proceed in a semantically
blind manner. Crucially, empirical results consistently show that
any parsable orthographic string is associated to the activation of
morphemic information, irrespective of effective morphological
structure (corner vs. darkness; Longtin, Segui, & Hallé, 2003),
semantic transparency (courteous vs. darkness; Rastle et al.,
2004), and familiarity (quickify vs. darkness; Longtin & Meunier,
2005). Therefore, we can build on extensive evidence that mor-
phemes are automatically accessed when processing any word that
is potentially complex (Rastle & Davis, 2008).

Assuming that a compositional procedure is always applied
when morphological information is available does not imply that
this operation will always be successful at retrieving the full-
fledged semantic denotation of the derived form. Because of the
way they are obtained, FRACSSs reflect statistical systematicities
in the relations between stem and derived word meanings. Our
qualitative analysis above showed that this systematicity encom-
passes a larger degree of semantic variations than usually assumed,
but the latter are still limited to (semi-)regular, predictable, syn-
chronic operations. Such procedures, that are effective when build-
ing the meaning of novel derived forms, are bound to miss a
certain amount of information when dealing with some existing
words. The lexicon of a language is continuously evolving through
time: complex words becomes progressively more lexicalized, and
many of them are subject to a certain amount of semantic drift. To
fully explain the semantic processing of morphologically complex
words, the compositional procedure must be paired with a way to
directly access the meaning of the derived form as a whole. This
alternative and complementary whole-word route should capture
meaning shifts caused by diachronic phenomena (as well as mor-
phemic accidents of the corner type).

When dealing with existing words the questions that have to be
addressed are hence rather different from those explored for novel
forms. First, we want to evaluate to what extent a compositional
procedure can explain the semantic variations present in familiar
morphological constructs; or, in other terms, to what extent (semi-)
systematic semantic relations can account for morpho-semantic
phenomena. Second, we aim at assessing the relative efficiency of
the two semantic procedures (compositional vs. whole-word) in
different tasks and experimental conditions.

A natural domain to test the relative role of the compositional
and whole-word routes to complex word meanings is the empirical
study of the degree of semantic transparency of a derived form
with respect to its stem. The semantic transparency of a complex
word indicates how easily the whole-word meaning can be inferred
from the meaning of its parts. For example, the meaning of the
transparent derived word rename is largely predictable from the
meaning of its stem (name) and its affix (re-), whereas the same
cannot be said for the opaque remark, whose meaning is not
(easily) understood given the meaning of its parts.

The role of semantic transparency has been a central theme in
the literature on complex word processing, with most research
revolving around the hypothesis that transparent words can be
accessed through the representations of their morphemes, whereas
opaque words have to be represented on their own, and thus,
accessed directly. This assumption has been largely investigated
by means of priming paradigms (e.g., Feldman & Soltano, 1999),
where typically the derived form (e.g., dealer) is used as the prime
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stimulus and participants are asked to recognize the following stem
target (e.g., deal). The priming effect corresponds to the amount of
facilitation in the response latencies compared with an unrelated-
prime condition (e.g., speaker-deal), whereas possible confounds
(e.g., orthography, semantics) are excluded in a series of control
conditions. Prime duration (usually measured through the Stimulus
Onset Asynchrony, SOA) can be manipulated to investigate dif-
ferent processing levels. The alleged modulation of semantic trans-
parency on morpheme access is supported by results associated to
long-SOA primes: a significant priming effect is found only for
transparent words, whereas with opaque primes it does not emerge
(Meunier & Longtin, 2007; Rastle et al., 2000; Rueckl & Aicher,
2008). Results are less clear-cut at short SOAs (in particular, in the
masked priming condition): a priming effect is observed for both
word types, indicating that, as mentioned above, at early process-
ing stages morphemes are routinely accessed irrespective of se-
mantic transparency (Rastle et al., 2004). Still, even at short SOAs
some studies report significant differences in priming effect sizes,
with more facilitation for transparent than opaque words (Diepen-
daele et al., 2005, 2009; Feldman et al., 2012, 2009; Järvikivi &
Pyykkönen, 2011; Kazanina, 2011; Marelli et al., 2013). More-
over, recent results from both priming (Tsang & Chen, 2014) and
eye-tracking studies (Amenta et al., in press), although confirming
that morphological parsing proceeds in a semantically blind man-
ner, also suggest that the morpheme meanings are accessed straight
away after word decomposition. In conclusion, empirical evidence
shows that semantic transparency plays a role in complex word
recognition, although its effect can be more or less prominent
depending on the processing stage under examination.

Prima facie, opaque words, being traditionally defined by the
property of having a meaning that is not predictable from their
parts, may be seen as outside the possibilities of our compositional
model. However, we think that this conclusion is far from granted,
as it depends on a series of assumptions regarding the nature of
semantic transparency that are common in the psycholinguistic
literature, but not necessarily warranted. First, semantic transpar-
ency is often conveniently operationalized in terms of meaning
similarity between a derived form and its stem. This approach
hence focuses on the meaning of the shared stem across the two
forms, overlooking the crucial role played by the affixes. In fact,
the latter are often active and meaningful also in opaque words
(Baayen et al., 2011), as they carry the correct morphosyntactic
information and respect the grammatical constraints of the com-
bination (-ous marks the adjective class in courteous, -ic combines
with a noun to generate the adjective cryptic), and often more
(-less marks the absence of something in fruitless). This important
role, totally missed when we focus on the derived-form stem only,
is a crucial aspect of the compositional approach that represents
affixes as FRACSSs, that is, the functional elements of morpho-
logical composition. Second, in most studies the opaque test set is
populated by highly heterogeneous elements, ranging from pseu-
doderived words such as corner to genuinely derived and not
entirely opaque ones such as fruitful. Certainly, in the former case,
the correct meaning cannot be obtained through combinatorial
processes. However, some semantically opaque derived words
may still show a certain degree of compositional systematicity
(Plaut & Gonnerman, 2000; Royle, Drury, Bourguignon, & Stein-
hauer, 2012), provided the combinatorial procedure is flexible
enough to account for the fact that the affixation process should

select only some specific features that the stem carries (e.g., the
metaphorical meaning of fruit in fruitful, the crypt quality of being
dark and difficult to access in cryptic). The distributional repre-
sentations we adopted can arguably encode these separate facets of
meaning as specific dimensions of the stem vector (Griffiths et al.,
2007), and FRACSSs should be flexible enough to highlight dif-
ferent features of the input vectors when generating the derived
form (see the examples discussed above). Third, semantic trans-
parency should not be confused with the degree of systematicity of
derivation: a privative suffix such as -less will in general alter the
meaning of the stem quite a lot, even in forms where the meaning
shift is largely predictable: arguably, such forms are systematic but
not fully transparent. We think that much of the earlier literature
has mixed up systematicity with the strength of the effect that the
affix-driven transformation has on the meaning of the stem. The
results we are about to report, where our compositional model
makes good predictions about semantic transparency effects, sug-
gest that semantic transparency can, at least in part, be dissociated
from systematicity.11 In conclusion, opacity is not, a priori, a
theoretical limit for morpheme combination at the meaning level,
but it rather represents a good empirical benchmark for the corre-
sponding model, testing its nuance and flexibility.

Quantifying Semantic Transparency

Following a long tradition in psycholinguistic research (that
mostly exploited LSA-based measures, e.g., Gagné & Spalding,
2009; Milin et al., 2009; Rastle et al., 2000), we operationalized
semantic transparency as the proximity between the vector asso-
ciated to a target derived form t and its stem s (such that t � d(s),
at least potentially, for some derivation process d()):

ST � cos(s�, �t)

We use this mathematical formulation to describe semantic trans-
parency as predicted by either the composition procedure or the
traditional direct comparison between stem and derived form. The
only difference lies in how �t (the representation of the target
derived form) is obtained. Under the composition approach, �t is
obtained by multiplying the stem vector by the FRACSS, hence
without relying on an explicit representation of the derived form.
In the latter whole-word approach, �t is a vector directly extracted
from the corpus-based co-occurrence profile of the derived form,
hence ST depends on the similarity between two separate, explicit
representations. To further clarify: the composition approach also
yields a single vector representing the whole-word meaning of the
derived form; however, the latter is obtained by stem � affix
composition, instead of being induced directly from the corpus
contexts in which the derived word occurs.

Although we eventually compute the same transparency score
(i.e., the cosine between stem and derived-form vectors) under
both approaches, the theoretical implications associated to how �t is
obtained are crucial, and can be connected to the morpho-semantic
routes we proposed for the semantic processing of existing words.

11 As a consequence of our findings, we might argue that transparency
and opacity are somewhat misleading terms for the phenomenon we are
trying to model. Still, we stick to them for terminological coherence with
the earlier literature.
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Whole-word–based ST is not truly a morphological measure, as it
rather quantifies the association between two independent mean-
ings. Under this approach, ST indicates how much a derived form
is related to its stem in the same way in which the cosine measure
might tell us how much dog is related to cat. Therefore, the
whole-word model explores a semantic system populated by ho-
listic, encapsulated meanings. On the contrary, composition-based
ST quantifies how much the meaning of a stem word is altered by
the affixation process, that is, to what extent a FRACSS changes
the stem meaning, where this change should be, to a certain
extent, systematic (as opposed to unpredictable). This approach
is more easily connected to a morpheme-based semantics, be-
cause it does not assume explicit representations for the derived
forms, which are generated online by combining the mor-
phemes they are made of.

In the following experiments, the ST measures resulting from
the whole-word and composition-based approaches will be as-
sessed by considering a series of behavioral effects in morpho-
logical processing. The phenomena under examination include
explicit judgments of semantic transparency, facilitation in
morphological priming, and morpheme-frequency effects on
lexical decision latencies.

Explicit Intuitions About Affixed Words

Human ratings about the semantic properties of words are the
traditional benchmark for the reliability of distributional semantic
measures, and the case of semantic transparency of complex forms
makes no exception (e.g., Kuperman, 2009). The assumption is
that cosine similarity between stem and derived-form vectors
should correlate with explicit intuitions about the degrees of se-
mantic transparency of the derived form. Certainly, this alleged
correlation does not necessarily mean that distributional measures
would be effective predictors of language processing (e.g.,
Baayen, 2013). Still, distributional semantic measures are expected
to explain, at least partially, the variability observed in human
judgments about the semantic transparency of derived forms.

Materials and method. A set of 900 word pairs, each includ-
ing a derived form and its stem, were included in the experiment.
Stimuli were chosen by randomly sampling 50 derived forms from
each of the 18 affixes (15 suffixes and 3 prefixes) with the highest
number of training examples (i.e., largest family sizes) from our
FRACSS set (see Appendix A).

Semantic transparency ratings were collected by means of a
crowdsourcing study. Participants were again recruited from Am-
azon Mechanical Turk through CrowdFlower. Only (self-declared)
native speakers of English were admitted. Participants were asked
to rate the pairs for how strongly related the meanings of their
component words were on a 7-point scale, ranging from 1 �
completely unrelated to 7 � almost the same meaning. Seven
judgments were collected for each pair. To ensure that participants
were committed to the task and exclude nonproficient English
speakers, we used 60 control pairs as verification items, consisting
of pairs either including highly transparent derived forms (singer-
sing) or pseudoderived words whose apparent complexity is just
orthographic happenstance (corner-corn). Participants who gave
obviously wrong answers to these control pairs (at the opposite of
the expected end of the transparency scale) were automatically
excluded from the experiment. By-item average scores were used

as dependent variable. The resulting dataset has already been used
in Lazaridou, Marelli et al. (2013), and can be downloaded from
http://clic.cimec.unitn.it/composes/FRACSS/. Six pairs were ex-
cluded from the analysis for technical reasons.

As described above, semantic transparency was operationalized
as the cosine similarity between stem and derived-form vector. For
semantic composition, the derived-form vector was induced by
applying the relevant FRACSS to the stem vector, whereas for the
whole-word approach we extracted the derived-form vector di-
rectly form the corpus. These distributional measures were sepa-
rately tested as predictors of participants’ ratings.

Results. Collected judgments had an interrater agreement of
60%. The distribution of the average ratings was negatively
skewed (mean rating: 5.52, SD: 1.26). Figure 4 compares this
distribution with those produced by the models (human ratings
were rescaled to the 0–1 range for direct comparability). Although
the model-based scores are clearly more Gaussian-distributed,
their rank-based correlations with participants’ ratings are signif-
icant (composition: 	 � .32, p � .0001; whole-word: 	 � .36, p �
.0001).

To rule out the possibility that the performance of a method
depends on particularly effective representations of only few, more
regular, affixes, we tested the ST measures in mixed-effects mod-
els including random intercepts and slopes associated to the affixes
(p values were computed adopting the Satterthwaite approximation
for degrees of freedom). The effects are indeed confirmed for both
whole-word ST, t � 5.75, p � .0001 and composition ST, t �
2.57, p � .0221, with the former approach clearly outperforming
the latter (
AIC � 81, see Wagenmakers & Farrell, 2004).

Results are consistent in analyses using ranks in place of aver-
age judgments (whole-word: t � 6.97, p � .0001; composition:
t � 3.57, p � .0004), indicating that they are not overly influenced
by the skewness of the dependent variable. Still, to exclude the
possibility that the good performance depends on transparent
words being overrepresented, we median-split the items on the
basis of their transparency ratings. The effects of the transparency
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Figure 4. Distribution of Semantic Transparency values in human ratings
and in the model-generated measures.
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measures hold in both the high-transparency (whole-word: t �
4.35, p � .0002; composition: t � 2.57, p � .0103) and low-
transparency sets (whole-word: t � 3.41, p � .0027; composition:
t � 2.17, p � .0339), confirming the reliability of the results and
the good performance of the models.

Discussion. Results indicate that distributionally based se-
mantic transparency measures significantly predict human intu-
itions. The semantic composition approach does not perform as
efficiently as the direct measure of semantic relatedness based on
whole-word vectors. Still, the effect of the composition-based
transparency variable is significant throughout a series of control
analyses, and in particular when focusing on low-transparency
words. Semantic opacity can hence be reframed, at least in part, in
terms of strong but systematic semantic composition effects on the
meaning of the stem, still amenable to a suitably flexible compo-
sitional analysis. An opaque word is not necessarily a word subject
to unpredictable, lexicalized drift; it can also be a derived form in
which the affixation process has a strong effect on the resulting
meaning, taking it farther way from the stem than in the case of
transparent words.

As suggested in the qualitative-analysis section, this more gen-
eral and nuanced view of semantic transparency is possible be-
cause FRACSSs are flexible enough to capture subregularities in
the production of new meanings through derivation, therefore
extending the boundaries of systematicity. For example, -ful and
-less do not always modify the primary meanings of the stems they
are attached to, but rather they apply to a metaphorical or second-
ary sense when attached to certain words (e.g., fruit, heart). Sim-
ilarly, -y often generates adjectives recalling general, less-defined
connotations of their stems, rather than their proper meanings (as
in beefy, foxy). Specific semantic features or alternative facets of
meanings are captured by different dimensions in the vector rep-
resentations we developed (as already discussed, vector dimen-
sions can be assigned an intuitive semantic interpretation, see, e.g.,
Griffiths et al., 2007). The functional approach we adopted is able
to learn which dimensions are more likely to generate more opaque
meanings when combined with specific affixes: a word that is
particularly characterized by dimensions denoting a metaphorical
meaning, for example, may be more likely to generate an opaque
form when combined with -less.

We are not claiming that the whole spectrum of semantic
transparency effects can be explained compositionally. As men-
tioned, there are phenomena in the lexicon that cannot be predicted
in compositional terms, such as lexicalization, semantic drift, and
purely etymological relations. To understand the meaning of, for
example, archer, whole-word access is needed, because in con-
temporary English arch has lost the relevant bow sense. This
explains why the whole-word approach outperforms composition
in predicting human intuitions: all these nonsystematic aspects are
part of a speaker’s lexical knowledge, and obviously impact the
way participants perceive complex words in a task involving
explicit judgments. In these particular cases, the compositional
approach may even be misleading, as it might generate transparent
meanings for the opaque forms. Indeed, the semantic neighbor-
hood of the composed vector for archer includes decorator, crafts-
man, carver, and carpenter, all words reflecting the present mean-
ing of arch as an architectural element.

However, the present results suggest that these latter cases
represent only a limited portion of the vectors generated using

FRACSS, and that semantic composition captures a much wider
range of the opacity continuum than previously thought. Indeed,
words like heartless, fruitful, foxy, and courteous are usually
classified as opaque, but the compositional procedure can produce
a good approximation of their meanings: we find that the
FRACSS-derived vector for fruitless includes in its neighborhood
depressingly, monotonous, and dreary; foxy includes sluttish,
leggy, and dishy; and heartless includes unfeeling, brutish, callous,
and pitiless.

As mentioned in the introduction to this experiment, explicit
judgments are not necessarily the best way to assess a model of
complex word meaning. In fact, the rating distribution is very
skewed: most words are perceived to be extremely transparent by
participants, which are arguably missing subtle meaning variations
between a derived word and its stem. Vector-based measures, on
the contrary, have more Gaussian-shaped distributions. In other
words, it seems that these latter measures are better suited to
capture the continuous nature of semantic transparency (see Gon-
nerman, Seidenberg, & Andersen, 2007) than explicit judgments
are. It is not surprising, then, that they were found to be better
predictors of processing measures (e.g., response latencies, fixa-
tion times) than human ratings (Baayen, 2013). In the next exper-
iments, we will turn to predicting response times in lexical deci-
sion tasks.

Priming Effects at Different SOAs

In the present experiment we consider priming effects in lexical
decision, focusing on paradigms in which the derived form is used
as prime for the corresponding stem. The scope of this empirical
analysis is twofold. First, priming paradigms are traditionally used
to test the time course of lexical processing: the relation between
priming effects and vector-based measures can shed light on which
processing levels are affected by the semantic operations we are
modeling. Second, in the previous section we studied a large
random sample of derived forms; priming experiments offer in-
stead the opportunity to focus on small, well-defined test sets, in
which the difference between transparent and opaque words is
extreme by design, thanks to the selection procedure carried out by
expert language researchers.

Materials and method. We used item sets previously em-
ployed by Rastle et al. (2000) in a series of priming experiments.
In that study, priming effects were tested in a number of different
conditions, including orthographic, purely semantic, and unrelated
pairs. We focused on the morphologically transparent (dealer-
deal) and opaque conditions (cryptic-crypt). The former set in-
cluded 24 derived-stem pairs, and the latter set included 21 pairs
(we excluded the original pair creature-create, because -ure is not
among our FRACSSs, and apartment-apart, because apart is not
in our semantic space). The two sets were originally validated by
human ratings on semantic transparency and LSA measures.

The item pairs were used in masked priming experiments adopt-
ing different SOAs (43 ms vs. 72 ms vs. 230 ms), where SOAs
correspond to the duration of presentation of the prime stimulus,
i.e., the derived word. SOA effects are believed to be informative
of the involved processing stages: because prime processing is
limited by presentation time, the shorter the SOA, the earlier the
associated priming effect will occur (although this assumption is
questionable, see Norris & Kinoshita, 2008; Tzur & Frost, 2007).
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We used the average reaction times (RTs) of each pair as reported
in the appendix of Rastle et al. (2000).

We took these stimuli, and the associated RTs, as a test set for
our vector-based measures. As in the previous analysis, we used
proximity between stem and derived vectors as a proxy for ST,
where the derived vector could be constructed through the com-
positional method or directly extracted from the corpus (whole-
word approach). First, we tested whether the measures were able to
correctly distinguish between opaque and transparent items. Sec-
ond, we assessed the association between vector-based measures
and RTs at different SOAs.

Results. Figure 5 reports the average proximity for opaque
and transparent pairs, as predicted by the composition- and whole-
word–based approaches. The composition-based measure predicts
derived forms to be more similar to their stems than the whole-
word–based measure does, but both models correctly distinguish
transparent and opaque sets: proximity is significantly higher in
transparent than in opaque pairs for both the composition, t(43) �
3.01, p � .0043, and whole-word measures, t(43) � 9.19, p �
.0001.

Figure 6 reports priming effects at different SOAs, when derived
forms are used as primes and the corresponding stems as targets
(Rastle et al., 2000). As suggested by a visual comparison of
Figures 5 and 6, the proximities produced by the composition
approach pattern very well with results at the shortest SOA,
whereas whole-word–based predictions are more in line with data
from longer SOAs. Indeed, when using the composition-based
approach, the vector-based proximity measure is correlated with
RTs at SOA � 43 ms, r � �.38, p � .0104, but neither at SOA �
72 ms, r � �.24, p � .1114, nor at SOA � 230 ms, r � �.22, p �
.1419. The opposite pattern is found with the whole-word ap-
proach: vector similarity is not correlated with RTs at SOA � 43
ms, r � �.27, p � .0735, but it is correlated with results at both
SOA � 72 ms, r � �.53, p � .0001, and SOA � 230 ms,
r � �.54, p � .0001. Results are confirmed in a series of
mixed-effects analyses12 including affix-associated random ef-
fects.

One reviewer suggested that the latter results might be ac-
counted for in terms of orthography-semantics dissociation:

whereas whole-word ST is a measure of semantic relatedness,
compositional ST would mainly capture the orthographic similar-
ity between stems and derived words, and it would be this form
similarity to explain short-SOA effects. However, this hypothesis
does not hold against empirical evidence. If the compositional
approach is actually capturing systematic orthographic relations,
the composed derived representations should mainly encode or-
thographic information. It would follow that the neighbors of a
composed derived form should be orthographically similar words,
and significantly more so than the neighbors of the whole-word
vector representing the same form. This is not the case. The
Levenshtein distance (Yarkoni, Balota, & Yap, 2008) between a
derived form and its top 10 nearest neighbors is not significantly
different when the derived-form vector is obtained composition-
ally (mean � 6.82, SD � 2.73) as opposed to being directly
constructed from co-occurrence counts (mean � 6.64, SD � 3.16).
This is confirmed by a mixed-effects analysis including random
intercepts and slopes of target words (t � 0.93, p � .3571). The
reported results cannot be explained in orthographic terms.

Discussion. The present results corroborate those we obtained
on transparency ratings, indicating that, even when a dichotomized
set of transparent versus opaque forms are considered, distribu-
tionally based measures are able to effectively distinguish the
groups. This is not surprising for the whole-word approach, as
LSA measures were used, in the very first instance, to construct the
two sets (Rastle et al., 2000). However, results indicate that the
same holds for composition-based similarity estimates, confirming
the hypothesis that even opaque words manifest a certain degree of
compositionality that is effectively captured in the proposed
model.

Moreover, the present results indicate that whole-word and
compositional approaches dissociate with respect to their quanti-
tative predictions about the item sets and that these predictions

12 Composition ST: SOA � 43 ms, t � 2.68, p � .0104; SOA � 72 ms,
t � 0.88, p � .3801; SOA � 230 ms, t � 1.05, p � .3010. Whole-word ST:
SOA � 43 ms, t � 1.75, p � .0889; SOA � 72 ms, t � 4.09, p � .0002;
SOA � 230 ms, t � 4.27, p � .0002.
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Figure 5. Similarity between derived words and their stems in the opaque
and transparent sets, as predicted by the composition- and whole-word–
based proximity measures.
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Figure 6. Priming effects of derived forms on recognition of the corre-
sponding stems at different stimulus onset asynchronies (SOAs). Adapted
from the results of Rastle et al. (2000).
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pattern quite well with results at different SOAs. The composi-
tional approach predicts opaque and transparent items to be more
similar, in terms of ST, than the whole-word approach does. This
prediction is mirrored by priming effects at very short SOAs,
indicating facilitation for both transparent and opaque words, with
a slight advantage for the former (e.g., Diependaele et al., 2005;
Feldman et al., 2009). On the other hand, the large difference
found between transparent and opaque items by the whole-word–
based measure resembles quite faithfully the pattern of results at
longer SOAs (e.g., Rastle et al., 2000; Rueckl & Aicher, 2008),
where the priming effect is found in transparent pairs only. This
dissociation between the distributional measures indicates that the
two approaches we described do not necessarily exclude one other,
that is, the compositional approach is not simply a full-parsing
attempt to recreate the corpus-extracted distributional vectors of
derived forms. Rather, from a cognitive point of view, they might
constitute models of different semantic processes. The composi-
tional approach captures an early, automatic procedure that capi-
talizes on regularities and subregularities in the semantic system to
attempt to combine the meanings of the observed morphemes. The
whole-word approach captures instead late procedures based on
the semantic similarity between lexical items (including stored
representations of derived forms); this similarity is not only deter-
mined by systematic aspects, but also by unpredictable lexicaliza-
tion processes that fall beyond the possibilities of the composi-
tional approach. The late semantic procedure taps into stored
knowledge about word meanings that cannot arguably be accessed
during the early, fast composition procedure.

As previously mentioned, short-SOA morphological priming
experiments mainly indicate a purely form-based decomposition
(e.g., Rastle et al., 2004): early in processing, words are morpho-
logically parsed solely on the basis of their apparent morphological
complexity, irrespective of actual morphological structure. Indeed,
priming is found for pairs like number-numb and dealer-deal, and
not for pairs such as dialog-dial (where -og is not a potential
morpheme). The present results do not challenge the role of purely
orthographic segmentation in short-SOA priming effects. To the
contrary, as we discussed in the introduction to the semantic
transparency experiments, our proposal presupposes this automatic
parsing of superficially complex strings, so that the compositional
procedure can apply to any potentially complex word (Rastle &
Davis, 2003, 2008). However, the present simulations also suggest
that an automatic combinatorial procedure of morpheme meanings
would build upon this orthography-based segmentation (in line
with Amenta et al., in press; Tsang & Chen, 2014). This additional
semantic procedure, consequent to a semantically blind parsing,
would explains the asymmetry that we observe, at short SOAs,
between transparent and opaque forms. The present results confirm
that a combinatorial view is crucial in understanding this early
semantic processing. Suppose that, after semantically blind parsing
of complex words, the resulting morphemes are systematically
recombined in an early semantic operation. As suggested by the
examples discussed in the previous section, the combinatorial
procedure will be, in some cases, able to generate the proper
“opaque” meaning of some words (e.g., fruitless as “unproduc-
tive”). As this meaning is quite different from that of the stem, the
semantic contribution to priming effects will be absent or weak.
On the other hand, it will produce a transparent version of the
meanings of very idiosyncratic combinations (e.g., archer as

“builder of arches,” corner as “corn grower”), which paradoxically
will trigger semantic priming (over and above the form facilita-
tion). Most opaque words will fall somewhere between these
extremes, resulting, at the aggregated level, in the pattern repre-
sented in Figure 5, which is, a priming effect that is not as strong
as that observed for transparent words (where the compositional
procedure always results in a meaning close to the one of the
stem).

This interpretation may help explaining the brittleness of the
(small) advantage for transparent versus opaque priming at short
SOAs (e.g., Diependaele et al., 2005; Feldman et al., 2009; Järvi-
kivi & Pyykkönen, 2011; Kazanina, 2011). The variability in this
much discussed effect could depend on the different makeup of the
item lists. The semantic effect would emerge in studies whose
opaque items have meanings mostly obtainable compositionally;
on the other hand, the semantic effect would not emerge in cases
where most items have highly idiosyncratic meanings, for which
the compositional procedure would only generate transparent al-
ternatives. In the former scenario, a priming effect at the semantic
level will be (somewhat) smaller for the opaque set, because the
corresponding item stems are more heavily modified by their
affixes. In the latter case, the compositional procedure will gener-
ate transparent meanings for both the transparent and the opaque
sets, leading to no difference between the two conditions. More
generally, the semantic contribution to the priming effect will
be limited (and the ST modulation small) because it builds on the
stronger systematic influence of the orthographic form at short
SOAs.

Certainly, the present considerations seem at odds with the
traditional take on masked priming studies, that are usually as-
sumed to reflect presemantic processing. However, more recent
results are in line with our interpretation: in masked priming
conditions, Tsang and Chen (2014) found that opaque words
significantly prime targets that are semantically associated to their
stems (e.g., butterfly-bread). The authors further showed (Tsang &
Chen, 2013) that semantic properties of morphemes are activated
in a masked priming paradigm. Although we must be cautious in
drawing strong methodological conclusions from our simulations
(proposing a new theory of priming is not the purpose of the
present article), we believe that the present model may help rec-
onciling this apparent inconsistency in masked priming results.
The traditional priming experiments have investigated semantic
associative relations that the present model ascribes to the whole-
word route. This latter would be based on long-term, stored lexical
knowledge, hence explaining why the associated priming effect
can only appear in long-SOA conditions, where the association
between prime and target can be explicitly appreciated. On the
other hand, the more recent results have focused their attention to
morpheme meanings. The results they obtained fit well the pre-
dictions of the combinatorial route, which rapidly computes the
whole-word semantics by relying on the representations of mor-
pheme meanings. The combinatorial take on semantics would be
crucial in explaining semantic effects at short SOAs. This hypoth-
esis is also consistent with results from the eye-tracking literature,
indicating that early semantic transparency effects in complex
word processing are compositionally connoted (Amenta et al., in
press; Marelli & Luzzatti, 2012). Further research on the issue is
certainly needed, but we find the converging evidence between the
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present approach and the results of these recent studies very
promising.

As a final note, it is worth stressing again that the present
proposal implies an early processing of complex words centered
on orthography. As a consequence, it does not preclude the pos-
sibility to isolate this presemantic processing stage through exper-
imental manipulations. For example, Gold and Rastle (2007) found
no overlap between neural priming effects for semantic pairs and
neural priming effects for opaque morphological pairs, and the
areas associated with morphological effects (left anterior middle
occipital girus) were quite unlikely candidates for a semantic
procedure. The very short SOA (30 ms) used in the study may have
helped evidencing a purely morpho-orthographic procedure. As
proposed by Gold and Rastle (2007) themselves, further studies
manipulating SOAs (e.g., incremental masked priming) would be
helpful for a better understanding of the influence of prime dura-
tion.

Modulation of Frequency Effects in Lexical Decision

Frequency effects have been traditionally seen as diagnostic of
the involvement of the corresponding word (or morpheme) repre-
sentations in lexical processing. If, when reading a derived word,
participants’ performance is influenced by stem frequency, the
corresponding stem representation must contribute in some way to
the processing of the derived word. Although many studies have
exploited frequency effects to investigate derived-word processing
(e.g., Baayen, Wurm, & Aycock, 2008; Taft, 2004; Traficante,
Marelli, Luzzatti, & Burani, 2014), surprisingly this has not been
done in conjunction with semantic transparency measures. This
tradition is instead well-established in the compound domain,
where many studies investigated how ST modulates constituent
frequency effects (Frisson, Niswander-Klement, & Pollatsek,
2008; Marelli & Luzzatti, 2012; Pollatsek & Hyönä, 2005). In the
present experiment we take inspiration from this research line to
test our model: the impact of distributionally defined ST measures
will be assessed in a lexical-decision task by evaluating how they
modulate stem and whole-word frequency effects.

Materials and method. A set of 3,806 affixed words and the
corresponding lexical decision latencies were extracted from the
English Lexicon Project database (ELP; Balota et al., 2007). All
selected stimuli contained one of the trained affixes (see Appendix
A) and were considered morphologically complex on the basis of
the morphological annotation provided by CELEX (Baayen et al.,

1995). RTs in lexical decision were used as dependent variable.
RTs were logarithmically transformed to obtain a more Gaussian-
like distribution.

Word frequency of derived forms and stems were collected from
the CELEX database (Baayen et al., 1995). Again, semantic trans-
parency was modeled as the proximity (measured by cosine of
angle) between the stem vector and either the composed vector of
the derived form (composition approach) or its corpus-extracted
(whole-word) vector. The interactions between these vector-based
semantic measures and the log-transformed frequency variables
were tested through mixed-effects analyses, including stimulus
length (in letters) as an additional covariate.

Results. Table 6 reports the results of the analyses using either
composition- or whole-word–based ST measures. We also in-
cluded per-affix random effects on the intercept and the slope of
the ST measures, to account for affix-associated variance. p values
were computed adopting the Satterthwaite approximation for de-
grees of freedom. All predictors were mean-centered to ensure
more reliable parameter estimation. A nonlinear length effect
improved the model fit; it was computed using restricted cubic
splines with three nodes. The interactions between ST and both
stem frequency and derived-word frequency were significant for
the semantic composition model, whereas only the interaction with
stem frequency was evident in the whole-word–based analysis. In
the present results, the composition approach provides a better fit
to the data with respect to the whole-word approach (
AIC � 8).
This difference is not negligible: following the approach proposed
by Wagenmakers and Farrell (2004), 
AIC � 8 would indicate
here that the composition model is 54.6 times more likely to be a
better model (in terms of Kullback-Leibler distance from the
distribution generated by the “true” model) than the whole-word
approach.

The interactions involving stem frequency in the two analyses
are represented in Figure 7. The effects have very similar patterns:
the higher the similarity between the stem and the derived-form
vectors (either composed or extracted from the corpus), the more
facilitatory the effect of stem frequency. In other words, having
frequent stems is most helpful when these are similar in meaning
to the corresponding derived forms. The interaction involving
derived-form frequency in the composition-based analysis is rep-
resented in Figure 8: the lower the similarity between the stem
vector and the composed vector of the derived form, the more
facilitatory the effect of derived-form frequency is.

Table 6
Fixed Effects in the Analysis of Lexical Decision Latencies, Using Either Composition-Based ST
or Whole-Word-Based ST as Fixed Predictor

Predictor

Composition ST Whole-word ST

Estimate t p Estimate t p

Intercept 6.635 1060.18 .0001 6.636 1048.49 .0001
Stimulus length (RCS 1) 0.015 6.69 .0001 0.015 6.81 .0001
Stimulus length (RCS 2) 0.017 5.73 .0001 0.017 5.67 .0001
Derived-word frequency �0.043 �37.11 .0001 �0.043 �36.52 .0001
Stem frequency �0.011 �9.83 .0001 �0.011 �9.68 .0001
ST �0.018 �1.11 .2809 �0.007 �0.59 .5615
Derived-word frequency � ST 0.021 2.84 .0045 0.009 1.79 .0732
Stem frequency � ST �0.014 �2.23 .0261 �0.010 �2.29 .0216
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The superiority of the compositional approach in the present
task is further supported by a follow-up analysis on the residual
RTs of the statistical model using whole-word ST. These latter
data capture the variance in response times that is not explained
when applying whole-word ST. Indeed, a significant interaction
between compositional ST and derived-form frequency emerges in
this control test as well, t � 2.071, p � .0384, indicating that the
compositional approach is able to explain a portion of variance in
RTs that is crucially missed when using whole-word ST.

Discussion. In the present section we have shown that the ST
measures extracted through our model significantly interact with
frequency effects in visual word recognition. Frequency effects
arguably reflect the ease of access to the concepts subtending the
corresponding words (Baayen, Feldman, & Schreuder, 2006).
Hence, these interactions are highly informative of the interplay
between morpheme meanings during the processing of morpho-
logically complex words.

On data from a straightforward lexical-decision task, the mea-
sure from the composition approach (a) outperforms the corre-
sponding measure from the whole-word framework in terms of fit
and (b) it is able to capture a wider range of phenomena associated
to ST. The better performance of the composition-based measure
can be explained by considering what we have discovered so far
about the cognitive processes underlying it. First, the composition
procedure encompasses a wide set of semantic regularities and
subregularities in the derivational process, and it is able to produce
words on a wide range of the semantic transparency scale (as
emerging from the analysis of explicit ST judgments as well as the
qualitative analysis of FRACSS-based vectors of derived words).
Second, the compositional procedure is fast and automatic, and
builds over very early access to constituent morphemes (as sug-
gested by the section on morphological priming). These properties
are particularly useful in a lexical-decision task, where participants
are asked to evaluate as fast as possible the stimulus lexical status,
rather than accessing the whole range of semantic properties of the
target word. The composition process is arguably able to produce
a “familiar enough” meaning to efficiently perform this task, even
if it cannot account for a series of semantic aspects (resulting from
semantic drift, diachronic lexicalization, etc.) that we established
to be outside the scope of composition, and rather captured by
whole-word semantics (and hence whole-word ST). This explana-
tion is in line with a number of results in the literature indicating

Figure 7. Interactions between stem frequency and ST measures in the composition- (left panel) and whole-
word–based (right panel) analyses.

Figure 8. Interaction between derived-form frequency and ST in the
composition-based analysis.
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the importance of stem meaning when performing lexical decision
of derived words (e.g., family size effects; De Jong et al., 2000).
Furthermore, it fits well with previous results on the pervasiveness
of morphological combination, showing that it occurs even when
experimental manipulations make composition much less efficient
(Taft, 2004).

Over and above the good overall performance of the composi-
tional approach, the associated ST measures resulted in interac-
tions that are also informative of the dynamics involved in the
composition process. First, we found an interaction between ST
and stem frequency. The effect indicates that, as expected, the
familiarity with the concept subtending the stem is more important
when the latter is less strongly affected by the combination with
the affix (i.e., when ST is higher). In other words, the ease of
access to the stem meaning is important when that meaning is not
drastically changed by the FRACSS (transparent words), but not
very helpful when that meaning is not maintained through the
combination process (opaque words). Second, we found an inter-
action between ST and derived-form frequency: the lower the ST,
the stronger the facilitatory effect of frequency. Under the tradi-
tional view of ST, this effect could be easily explained as whole-
word access for opaque words. However, in the compositional
approach (the only one that shows this effect) there is no stored
representation of whole-word meaning. Hence, these results sug-
gest an alternative explanation, following the hypothesis that
whole-word frequency effects would reflect stored combinatorial
knowledge about morphemes (i.e., their joint probability), rather
than being evidence for whole-word lexical representations
(Baayen, Wurm, & Aycock, 2008). On the basis of the present
results, this stored combinatorial knowledge would be more help-
ful for opaque words. In these cases, the composition process
radically changes the stem meaning, and will be particularly de-
manding in terms of cognitive resources; these words will hence
benefit more from whole-word frequency because the possibility
to rely on stored information will be much more helpful in cases
where the underlying process is more difficult.

General Discussion of the Semantic
Transparency Experiments

In the present section we have tested measures generated from
our model in tasks involving existing derived words. In particular,
we focused on semantic transparency, operationalized as the prox-
imity between the vector associated to the word stem and the
vector associated to the derived form. This latter distributional
representation could be either directly extracted from corpus co-
occurrences of the derived form, treated as a standalone item
(whole-word approach), or generated through our data-induced
compositional procedure (composition approach). The two ap-
proaches do not constitute alternative explanations for the same
process; rather, they appear to be models of cognitively different
and behaviorally distinguishable procedures. Indeed, in a series of
three benchmark tests we observed a clear dissociation between
composition- and whole-word–based representations. Composi-
tion is most predictive of lexical decision latencies and short-SOA
priming effects. Thus, it can be described as an early, fast proce-
dure, that builds on automatically accessed morphemes (Rastle et
al., 2004) and generates derived-word meanings on the basis of
systematic semantic (sub-)regularities. The whole-word–based

measure is a good predictor for explicit judgments on semantic
transparency and long-term priming effects. These results suggest
a procedure that emerges late during word processing, capitalizes
on the similarity between different meanings, captures nonsystem-
atic, unpredictable phenomena, and is at least partially based on
stored knowledge.

The architecture described is that of a dual procedure system
similar to those often proposed in morphological processing (Chi-
alant & Caramazza, 1995; Clahsen, 1999; Schreuder & Baayen,
1995). However, these models mostly focused on the lexical
processing of complex forms. In the present study, the dual route
architecture is applied to semantic computation. On the one hand,
the meaning of a derived form can be accessed directly as an
activation pattern throughout a series of semantic nodes; this
distributed representation would include the full extent of the
meaning information holistically associated to the word, including
nonsystematic aspects depending on lexicalization processes. This
procedure would model ST as a by-product of the similarity
between the meaning of the derived form and the coactivated
representation of the stem, in a “network resonance” process
similar to the one proposed to explain family size effects (De Jong
et al., 2000). On the other hand, the composition route would
capitalize on a series of semantic nodes activated by the stem,
which is in turn transformed through the FRACSS application. The
resulting activation pattern would approximate the derived word
meaning on the basis of statistical regularities in the affix seman-
tics. In this procedure, ST will capture the amount of meaning
modification that the stem undergoes following affix application,
independently of the degree of predictability of the transformation
(up to a limit).

We hypothesize that the two routes apply to any word that is
(apparently) complex, irrespective of its actual morphological
complexity. In other words, both words traditionally considered
transparent (e.g., builder, happiness) and words traditionally con-
sidered opaque (e.g., fruitless, archer) would undergo the same
dual procedure. Whereas the whole-word route would obviously
efficiently retrieve all the semantic aspects of the derived word,
irrespective of its ST, one may reasonably doubt of the effective-
ness of the composition procedure when dealing with opaque
words. Surprisingly, we have shown that a composition approach
can explain a wider range of phenomena than one may expect:
(many) opaque words present a certain degree of systematicity,
which FRACSSs are able to capture. As a consequence, the mean-
ings of words like fruitless, foxy, or heartless can be obtained
compositionally, making the corresponding route reliable for most
complex words. At the same time, the proximity of the stem to the
obtained derived form serves as an effective cue of (certain aspects
of) semantic transparency.

Certainly, in some cases (archer, corner) there is no systematic
or synchronic relation between the derived form and its (pseudo-)
morphemes to rely on. These cases represent an obvious limitation
for the compositional route that, we have shown, ends up gener-
ating “transparent” alternatives for the meaning of very opaque
words (e.g., archer as an artisan who builds arches). Given these
limitations, one may wonder why a suboptimal system should be
applied at all, given the reliability of the alternative whole-word
route. Many reasons support the compositional conjecture. First,
the empirical results we reported indicate that, in specific tasks, the
composition approach generates ST scores that are better at pre-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

507MODELING MORPHEME MEANINGS WITH DISTRIBUTIONAL SEMANTICS



dicting human performance than the whole-word ones. When
semantic access is constrained by the experimental setting (short
SOA priming) or not fully required to perform the task (lexical
decision), composition provides a faster alternative to the whole-
word route.

Second, from a theoretical point of view, the processes of a
biological system need not to be optimal, but rather satisficing
(Simon, 1956; for a thorough discussion on the issue, see Bowers
& Davis, 2012). The composition procedure seems indeed to be
“good enough,” being effective on the majority of complex words
(all the transparent ones and many of the opaque ones). Moreover,
the assumption of multiple procedures for the same purpose is in
line with the principle of maximization of opportunity (Libben,
1998), that has provided theoretical backing to successful models
of morphological processing (e.g., Kuperman, Schreuder, Bertram,
& Baayen, 2009).

Third, there are many cases in which a compositional procedure
is required to obtain the correct meaning. These cases do not only
include novel words, but also opaque words that can have alter-
native transparent readings: words like chopper and ruler, despite
having dominant opaque meanings, carry also transparent senses
that can be obtained compositionally. Indeed, it is possible to
imagine contexts in which even the most opaque word can be used
compositionally: forty indicates a number, but one could imagine
a group of ancient Romans spotting a piece of land and saying
“That area looks quite forty” (i.e., a good place to build their
fort).13 Recent results confirm that context can be used to prime a
transparent reading of opaque words (Amenta et al., in press), and
that a compositional procedure is used to retrieve the alternative
meaning.

The proposal of a dual-route system opens new research ques-
tions related to the relative efficiency of the two procedures. These
do not only include the variability in performance across tasks and
word types, investigated here by focusing on the ST scores pro-
duced by either procedure. It also gives the chance to investigate
the extent to which the two routes produce consistent results, and
how this affects word processing. Such consistency can be easily
quantified by the cosine similarity between vectors representing
derived forms obtained compositionally and derived-word vectors
represented holistically from corpus co-occurrences. This index
will measure the degree of systematicity of a derived-word mean-
ing, that is, it would indicate to what extent the meaning of the
word is computable through semantic (sub-)regularities. The cog-
nitive process underlying the measure would be a stage at which
the semantic information from the composition and the whole-
word route are integrated into a unique representation. A reason-
able prediction is that the closer the representations generated by
either route, the easier the integration will be, corresponding to
shorter processing times observed at the behavioral level.

Finally, the experiments reported in this section suggests that
semantic transparency is a more nuanced phenomenon than usu-
ally assumed. Specifically, it encompasses both the traditional
dichotomy between forms whose meaning can be predicted from
their stems and idiosyncratic ones, but also the amount of trans-
formation of stem meaning that is brought about by an ultimately
systematic affixation process. This latter effect only becomes clear
thanks to our compositional framework, which allows us, for the
first time, to go beyond intuitive arguments about systematicity,
making precise predictions about which affix-triggered meaning

transformation patterns are statistically robust enough to be cap-
tured by a suitably flexible compositional process.

An important point that will require further investigation is the
relative speed of the processing routes. In fact, why the composi-
tion route should be faster than its counterpart remains an open
question. The reasons may rest on the properties of the routes
themselves: the whole-word procedure has to retrieve the semantic
representations of two independent words (stem and derived form),
whereas composition relies on stem meaning only, which is then
transformed using one of a limited set of functions. The latter
procedure, in our model, can be seen as the update of a single
semantic pattern (the stem), rather than the actual combination of
two independent meaning representations. This hypothesis is in
line with approaches positing qualitative differences between the
meanings of stems and affixes (Laine, 1999; Lehtonen et al.,
2014). On the other hand, it seems at odds with the model by
Grainger and Ziegler (2011), in which the coarse-grained (global)
route accesses semantics faster than its fine-grained counterpart.
We believe this inconsistency is only apparent. Grainger and
Ziegler model how orthographic information can activate seman-
tics, whereas the present approach simulates operations within the
semantic system itself (and, in particular, how a ST effect can
emerge). Therefore, the two approaches focus on different pro-
cessing levels, and address very different theoretical questions.
The present model assumes that the operations postulated by
Grainger and Ziegler (2011) have already taken place.

Indeed, one may also hypothesize that the two semantic routes
we described build on information from different presemantic
stages. Let us consider the work by Crepaldi et al. (2010) as
reference. This model assumes an early morpho-orthographic
stage, at which morphemes are accessed in a semantically blind
fashion, followed by later lexical processing, in which full forms
of words (including both stem and derived form) are activated.
This contrast fits well the characterization of the two routes of the
present model. On the one hand, composition would proceed from
the earlier morpho-orthographic stage, exploiting the activated
morphemes to generate a semantic representation. On the other
hand, the whole word route would concern later lexical stages,
with ST effects emerging from the degree of relatedness between
independent semantic entries.

In conclusion, most of the literature on morphological process-
ing is focused on lexical aspects, and how these influence semantic
activation, rather than the representation of semantics per se. For
this reason, future studies will need to delve into the interplay
between the present, semantic-centered, system, and previous
model capturing form-based aspects of word processing.

General Discussion

Semantics has been for many decades the skeleton in the closet
of scientific approaches to language analysis (Tomalin, 2006). On
the one hand, conveying meaning is arguably the very reason
language exists; on the other, the latent nature of meaning in the
linguistic signal makes it hard to study objectively. Distributional
semantics offers a way out of the conundrum by suggesting that
meaning can be captured with the same distributional approach
that has been a core part of linguistic analysis at least since

13 We are grateful to Kathy Rastle for this example.
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structuralism. Not by chance, it was Zellig Harris, a structuralist
deeply concerned with sound methodological procedures, who
pioneered distributional semantics already in the fifties (Harris,
1954). If at the time this was just a theoretical program, in the last
few decades distributional semantics has become a very concrete
proposition, offering empirically effective corpus-induced mean-
ing representations for thousands of words.

The usefulness of distributional semantics has not escaped the
attention of the morphological processing community, where it has
become fairly standard to use distributional semantic models for
quantitative estimates of the relation between stems and derived
forms (or compounds and their constituents). However, standard
distributional semantic models are models of whole-word mean-
ings. They might be useful to assess after-the-fact similarity be-
tween a derived form and its stem, but they are of no help in
modeling the process of derivation at the semantic level.

In contrast, by building on recent research in compositional
distributional semantics, we introduced here a model of morpho-
logical derivation that can account for the dynamic process of
meaning construction in word formation. In the FRACSS model,
stems are represented by standard distributional vectors, whereas
affixes are linear functions that act on stem vectors, modifying
them to produce vector representations of the output forms. A
qualitative analysis of the semantic neighbors of FRACSS-derived
forms confirmed that the transformations encoded in the FRACSS
matrices have enough nuance to capture systematic and semisys-
tematic variations in affix meanings and how they affect stems.
Still, FRACSSs do not have enough capacity to capture very
idiosyncratic meanings, which must be stored holistically. Future
research should investigate empirically the predictions we make on
the divide between meaning patterns that are systematic enough to
be captured by FRACSSs (and could be productively extended)
and what must be left unanalyzed.

By deriving meanings through a compositional process, FRAC-
SSs allowed us, for the first time, to run computational simulations
of the all-important phenomenon of novel word derivation. We just
started exploring this new field of investigation with our attempt to
model nonce-form sensicality and similarity judgments, but of
course these explicit judgments and the studied properties are only
the tip of the iceberg.

Moreover, FRACSSs led to new insights when we turned our
attention to widely studied semantic transparency effects on mor-
phological processing. Equipped with an explicit model for the
semantic side of morphological combination, we found that there
are important aspects of semantic transparency that had until now
been ignored.

In particular, the issue of transparency must be kept clearly
distinguished from that of whole-word storage. The changes in
stem meaning that FRACSS representations bring about are rich
and nuanced enough that the approach can produce composition-
ally derived forms that are opaque (in the sense of being far away
from their stem meaning), without requiring storage of whole-
word information (put in other terms, opaque does not entail
unsystematic, if your model of systematicity is flexible enough).
We do not claim that all derived forms can be obtained composi-
tionally: there are certainly plenty of highly idiomatic complex
words whose meanings must be stored holistically. Indeed, the
picture emerging from our semantic transparency experiments
suggests a place for both compositional and whole-word meanings.

Still, the FRACSS model makes concrete predictions about which
words must be stored in full form because of semantic consider-
ations, and it paves the way to a new line of interesting empirical
studies, as well as to more explicit modeling of competition and
integration between composition and a direct meaning-retrieval
route.

It is interesting, to conclude, to look at how our approach to
morpheme semantics fits within the more general picture of mor-
phology and psycholinguistics. There is a long line of research in
theoretical morphology that treats (more or less explicitly) affix
meanings as feature bundles that affect the meaning of stems (also
represented as feature structures; see Jackendoff, 2002; Lieber,
2004; Scalise, 1984, among many others). In this line of research,
feature structures are typically manually specified for just a few
affixes and (partially) for a few stems, they contain categorical
(unary or binary) features and the combination operations are very
simple. Distributional representations for stems and FRACSSs for
affixes can be seen as an extension of the featural approach, with
much larger, automatically induced real-valued feature structures
(the distributional vectors and matrices) and a general operation to
combine them in composition. Interestingly, if recent trends in
morphology (e.g., Booij, 2010) tackle the paucity of fully system-
atic morphological processes and richness of subregularities by
emphasizing lexicalized schemas over productive rule-based com-
position processes, our approach suggests an alternative model,
that leaves more room to compositional word formation, but as-
sumes richer underlying representations, and makes the process of
composition more flexible and nuanced, so that it can also capture
patterns that would appear, on first sight, to be only partially
predictable.

The FRACSS approach offers a new perspective on the rules
versus analogy and rules versus similarity debates, as in the fa-
mous English-past-tense controversy (e.g., McClelland & Patter-
son, 2002; Pinker & Ullman, 2002) or in more general discussions
(e.g., Hahn & Chater, 1998). The system we propose is pervasively
characterized by systematic composition function application,
which can be seen as a rule-based process (indeed, according to the
criteria of Hahn and Chater, we are proposing a rule-based sys-
tem). However, on the one hand, the content of the rules (corre-
sponding to FRACSS morpheme representations) are learned via
an analogical process in which the FRACSS matrix weights are set
so as to provide the best approximation to examples of the com-
posite meanings they should produce. On the other hand, the rules
we learn do not operate in discrete terms, but as continuous
transformations of real-valued vectors. As such, they are rich and
nuanced enough to capture a good portion of that gray area of
half-systematic generalizations that have been traditionally seen as
the domain of analogy. Under our proposal, processes are trig-
gered in a discrete manner by all-or-nothing formal properties of
morphological derivation (affix x being discretely attached to stem
y), but they operate in a (superficially) fuzzy manner over contin-
uous lexico-semantic representations: we believe that this distinc-
tion between categorical syntactic rules (such as affix concatena-
tion) and less clear-cut lexico-semantic operations (such as affix-
triggered stem meaning alteration) has a strong intuitive appeal.
On the other hand, we have at the time little to say about processes
that appear to be fuzzy on the syntactic side as well, as in the
partial formal compositionality of forms such as grocer (but see
the General Discussion of the Novel Word Experiments on how
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our model could capture the fact that such form might contain
semantic features of the affix).

Our approach is very close to connectionist research not only in
its representation of word meaning as distributed patterns (e.g.,
Plaut & Gonnerman, 2000), but also in its emphasis on the need for
compositional operations that act over them (Smolensky, 1990).
Our proposal is fully in the spirit of Smolensky’s early approach to
composition in terms of operations on vectors, or more generally
tensors (see also Landauer and Dumais (1997) for an interpretation
of DSMs as neural networks). We bring two main innovations with
respect to this line of research. First, unlike most traditional
connectionist networks whose input and training data were de-
facto hand-coded, our corpus-induced distributional representa-
tions allow us to run real-life, large scale simulations of linguistic
phenomena, and provide a natural story for learning. Second, by
recognizing the strong asymmetry between argument (free stems)
and functional elements (affixes), we propose a view of composi-
tion where input vectors are transformed into other vectors that
belong to the same space of the input vectors. Under Smolensky’s
original tensor product proposal, instead, the output of composi-
tion is a tensor of much higher dimensionality than the input
elements, which is both problematic in computational terms and,
more seriously, implausible from a linguistic point of view (an
affixed form, e.g., is no longer comparable with its stem).

On a more technical level, FRACSS matrices can be seen as
fully connected feed-forward one-layer networks without nonlin-
earities. This makes them easy and efficient to induce from data,
and directly interpretable (as illustrated in the toy example in the
section on training FRACSS). We stress that the simplicity of the
model is offset by the fact that each affix is represented by a
separate matrix/network, and indeed when composition is seen as
a function of affix (matrix) and stem (vector) representations, their
relation is not linear, as we will show in Appendix B. More
important, both the qualitative examples and the experimental
evidence we reported suggest that the relatively simple FRACSS
approach can account for an important portion of the (semi-)
systematic semantic patterns encountered in derivational morphol-
ogy. Further research should ascertain whether extending FRACSS
with multiple layers and nonlinearities brings about empirical
improvements that justify the trade-off in added model complexity.

More generally, the FRACSS approach follows the same path of
connectionism and cognitively oriented distributional semantic
models in reproducing the remarkable human capacity of extract-
ing systematic knowledge from complex statistical patterns. These
architectures focus on learning associations between different lin-
guistic elements as, for example, orthographic features and seman-
tic features (in connectionist models of morphology: Plaut &
Gonnerman, 2000), words and documents (in LSA and Topic
Models: Griffiths et al., 2007; Landauer & Dumais, 1997), or
words and other words (in HAL: Lund & Burgess, 1996). We
extend this capacity to second-order associations, in the sense that
FRACSSs capture systematic relations between two sets of distri-
butional vectors (stems and derived forms), that are in turn encod-
ing associations between words and their contexts.

With regards to theoretical, “box-and-arrows” models of mor-
phological processing, the FRACSS approach fills a long-standing
gap in the definition of morphemes at the meaning level. The
model is in line with all those frameworks that assume, more or
less explicitly, a combinatorial step between morpheme meanings,

and in particular the proposals conceiving qualitatively different
representations for stems and affixes (e.g., the single-route decom-
position model by Stockall & Marantz, 2006, based on rule-
governed concatenations of stems and affixes).

From the point of view of distributional semantics, our research
program addresses an important weakness of classic DSMs,
namely that they are static, word-based models of the lexicon,
providing meaning representations only for (simple and derived)
words that are sufficiently frequent in the source corpus. FRACSSs
enrich the distributional semantic lexicon with dynamic, word-
and-affix processes that allow us to create representations of new
words from existing primitive or derived elements. It is worth
noting that the functional approach has been first developed to
account for syntactic composition above the word level. By ex-
tending it below the word to handle morphological phenomena, we
blur the boundary between morphological and syntactic derivation,
proposing a unified account for semantic composition at both
levels. As the morphology-syntax boundary is far from sharp, we
see this as a very promising development.

Note that we have here only experimented with “vanilla” DSM
representations. An interesting direction for future research is to
experiment with FRACSSs induced on different spaces (e.g.,
spaces more akin to LSA, Topic Models, or Neural Language
Models), to see if they capture complementary aspects of semantic
derivation.

Many questions are still open, and they will have to be inves-
tigated in other studies. However, we believe that the results we
presented here demonstrate that the functional approach to distri-
butional semantics can lead to important new insights into the
semantic structures and processes of derivational morphology.
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Appendix A

Complete Affix Set Used in Our Experiments

Affix Type Stem POS
Derived form

POS
Training
examples

-able Suffix Verb Adjective 284
-al Suffix Noun Adjective 341
-ance Suffix Verb Noun 56
-ant Suffix Verb Adjective 105
-ary Suffix Noun Adjective 89
-ate Suffix Noun Verb 118
-en Suffix Adjective Verb 74
-ence Suffix Adjective Noun 177
-ent Suffix Verb Adjective 75
-er Suffix Verb Noun 1,074
-ery Suffix Noun Noun 95
-ful Suffix Noun Adjective 148
-ic Suffix Noun Adjective 386
-ify Suffix Noun Verb 50
-ion Suffix Verb Noun 764
-ish Suffix Noun Adjective 127
-ism Suffix Adjective Noun 108
-ist Suffix Noun Noun 341
-ity Suffix Adjective Noun 495
-ize Suffix Noun Verb 210
-less Suffix Noun Adjective 206
-ly Suffix Adjective Adverb 2,884
-ment Suffix Verb Noun 241
-ness Suffix Adjective Noun 1,270
-or Suffix Verb Noun 164
-ous Suffix Noun Adjective 234
-y Suffix Noun Adjective 596
de- Prefix Verb Verb 74
dis- Prefix Verb Verb 122
en- Prefix Noun Verb 56
in- Prefix Adjective Adjective 238
mis- Prefix Verb Verb 61
re- Prefix Verb Verb 159
un- Prefix Adjective Adjective 329

(Appendices continue)
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Appendix B

On the (Non-)Linearity of FRACSSs

While in the system we presented each affix corresponds to a
linear operation, the relation between the stem (vector) and affix
(matrix) representations involved in a composition is actually not
linear.

In traditional distributed models of composition (e.g., classic
work by Smolensky, 1990, but also more recent work by Guevara,
2010; Luong et al., 2013; Mitchell & Lapata, 2010; Zanzotto et al.,
2010), composition is seen as a function f() operating on the
concatenation of two input vectors representing the morphemes to
be composed. Many of these models are based on matrix multi-
plication, where the concatenated input vectors are multiplied by
the single matrix representing the composition function. This is of
course a linear operation (each dimension of the output vector is a
weighted sum of the input dimensions).

In the FRACSS approach, we associate instead different com-
position functions to a certain class of linguistic expressions (i.e.,
affixes). In particular, we assign a matrix to each affix, and
perform composition by multiplying it by the vector representing
the stem. We have a separate composition function faffix() for each
affix. This function applies to stem vectors, not to concatenations
of affix and stem vectors. In this perspective, the approach is
linear. However, it has much more power than the linear ap-
proaches briefly outlined above, because each affix is represented
by a matrix instead of a vector. This implies, first of all, that (if
stem vectors are d-dimensional) we have d � d weights to repre-
sent the affix meaning, instead of d.14 Second, because the affix
corresponds directly to the matrix, the output dimensions are no
longer weighted sums of input vectors, but sums of dimension-
wise products of affix and matrix dimensions (that should capture
their interaction beyond additive effects: for example, 0 in an affix
cell can cancel out the corresponding stem component).

Therefore, we can re-interpret our model from a different per-
spective. Suppose that, as in the traditional approaches, we look at
composition as a single function f() that applies to the concatena-
tion of distributed representations of the affix and the stem. The
affix matrix can of course be unfolded into a (d � d)-dimensional
vector, and so the concatenation will be a vector with (d � d) �
d dimensions.

Given the vector v resulting from the concatenation of the affix
and the stem, when the composition function f() is applied to v, the
k-th dimension ok (for k ranging between 1 and d) of o, the output
vector, is given by:

ok � �i�1
i�d v((k�1)�d)�i � v(d�d)�i

This is no longer a linear function. For example, given a con-
stant a:

af��� � f�a��.

Compared with a composition model assuming a single or a
limited set of linear functions operating on concatenated stem and
affix representations (such as those proposed by Guevara, 2010,
and Zanzotto et al., 2010), the functional approach we adopted
possesses a lot more flexibility thanks to the choice to encode each
affix as a separate function, and to the interactions captured by the
multiplicative relation between stem and affix dimensions.

14 We ignore the intercept dimensions here for simplicity, and because
they do not affect our main point.
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