Morphological resources in the LiLa Knowledge Base

An overview of past, present and future work

Matteo Pellegrini matteo.pellegrini@unicatt.it

> Morphology Reading Group Université de Paris-CNRS, Laboratoire de Linguistique Formelle December 17, 2021

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme - Grant Agreement No. 769994.

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Introduction Linked Data Principles

Lila: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

- Nowadays, a lot of linguistic **resources** and NLP **tools** are available for many languages
- However, they are characterized by different conceptual and structural models

 interoperability and secondary reuse are difficult to achieve
- Be FAIR! Make your data Findable, Accessible, Interoperable and Reusable (Wilkinson et al. 2016)
- ► Tim Berners-Lee's principles of Linked Data
 - Use Uniform Resource Identifiers (URIs)
 - Use the HTTP protocol to allow people (and machines) to access URIs
 - Use web standards to represent/query (meta)data
 - Include links to other URIs
 - ightarrow Linguistic Linked Open Data cloud (Cimiano et al. 2020)

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

- Open-ended Knowledge Base of interoperable linguistic resources for Latin sharing a common vocabulary for knowledge description
- Use of web standards to represent and query data
 - RDF: information is coded in terms of **triples**, connecting a **subject** to an **object** through a **property**
 - SPARQL to query RDF data
- Reuse of existing ontologies
 - OLiA (linguistic annotation)
 - NIF, CoNLL-RDF (corpus annotation)
 - OntoLex-Lemon (lexical resources)
- The backbone of the LiLa Knowledge Base is the Lemma Bank, a collection of canonical forms (i.e. citation forms) of Latin words

Architecture of the LiLa Knowledge Base

RDF data model

Nunc **est** bibendum (Horace, *Odes*, 1, 37)

est

http://ilia-erc.eu/data/corpora/Horace_Odes_b6lf30d5-891a-4a21-8ecf-cb2b96143db6/id/citationUnit/Horace_Odes/CiteStructure/s-340/t-2 <http://purl.org/powla/powla.owl**#Terminal**>

rdfs:label <http://purl.org/powla/powla.owl#hasStringValue> est <http://purl.org/powla/powla.owl#Terminal> rdf:type <http://lila-erc.eu/data/corpora/Horace_Odes_b6ff30d5-891a-4a21-8ecf-cb2b96143db6/id/citation <http://purl.org/powla/powla.owl#next> 4 hibendum lila:hasLemma <http://lila-erc.eu/data/id/lemma/126689> 4 sum <http://lila-erc.eu/ontologies/lila_corpora/hasCitStructure> <a>shttp://lila-erc.eu/data/corpora/Horace_Odes_b6ff30d5-891a-4a21-8ecf-cb2b96143db6/id/citation 4 Citation Laver <http://purl.org/powla/powla.owl#previous> <http://lila-erc.eu/data/corpora/Horace_Odes_b6ff30d5-891a-4a21-8ecf-cb2b96143db6/id/citation **4** Nune

Architecture of the OntoLex model

LiLa: connected resources and upcoming connections

Linking Latin

Corpora

- Index Thomisticus Treebank (Summa contra Gentiles): ca. 450,000 nodes
- Dante Search (700th death anniversary): ca. 46,000 tokens
- 🗹 Querolus sive Aulularia: ca. 17,000 tokens
 - PROIEL and LLCT treebanks
 - Computational Historical Semantics, LASLA and CroALa corpora
- Lexica
 - ☑ Word Formation Latin: ca. 46,000 lemmas (Classical Latin)
 - Z Etymological dictionary of Latin & the other Italic Langs.: ca. 1,400 entries
 - ✓ LatinAffectus: ca. 2,300 entries
 - ☑ Index Graecorum Vocabulorum in Linguam Latinam: ca. 1,800 entries
 - Latin WordNet: ca. 1,000 manually checked entries
 - Latin Vallex 2.0: Valency Lexicon
 - Lewis & Short Dictionary
- NLP tools
 - LEMLAT (lemma bank): ca. 150,000 lemmas
- TOTAL: approximately 13.5 million triples

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Derivational lexicon of Latin characterised by a step-to-step morphotactic approach: lexemes that are directly derived from one another are connected via word formation rules (WFRs)

- Derivation (prefixation / suffixation / conversion) vs. compounding rules
- Classification based on the lexical category of the input and output lexeme

input lexeme(s) (PoS)	output lexeme (PoS)	prefix	suffix	WFR
FELIX 'happy' (A)	INFELIX 'unhappy' (A)	in-	-	A-to-A in-
FELIX 'happy' (A)	FELICITAS 'happiness' (N)	-	-tas	A-to-N -tas
MALUS 'bad' (A)	MALUM 'bad thing' (N)	-	-	A-to-N
AGER 'field' (N); COLO 'to cultivate' (V)	AGRICOLA 'farmer' (N)	-	-	N+V=N

ightarrow Lexeme-oriented perspective (Kyjánek 2020)

Eleonora Litta and Marco Passarotti

(When) inflection needs derivation: a word formation lexicon for Latin Words and Sounds, Volume I, 2020

The hierarchical structure of WFL

Hierarchical structure, representable with a directed tree-graph

Matteo Pellegrini | CIRCSE, Università Cattolica del Sacro Cuore

- Devised according to an Item-and-Arrangement model of morphology
- Some processes are not easy to fit into this rigidly hierarchical structure (cf. Budassi and Litta 2017)
 - Direction of conversion:

 $\mathsf{ADVERSARIUS}_A \text{ 'opposed'} \to \mathsf{ADVERSARIUS}_N \text{ 'opponent' or } \textit{vice versa?}$

- \rightarrow A decision has to be made even in cases that are not clear-cut
- Parasynthetic formations:

AQUA 'water' ightarrow *AQUESCO (?) ightarrow EXAQUESCO 'become water'

 \rightarrow Even if they are not attested, intermediate steps need to be added ("fictional lemmas")

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

- The Lemma Bank provides a limited amount of derivational information, taking it from WFL
- Each lemma is connected:
 - to the affixes (prefixes/suffixes) it displays;
 - ▶ to its **base** an abstract connector between lemmas that belong to the same family.
- ightarrow Family-oriented perspective (Kyjánek 2020)
 - Eleonora Litta, Marco Passarotti, Marco Budassi, Marco Pappalepore Of nodes and cells. Two perspectives on (and from) Word Formation Latin Lingue antiche e moderne, 9, 2020

The flat structure of word formation the Lemma Bank

- Compatible with more recent Word-and-Paradigm theoretical approaches
 - Construction Morphology (Booij 2010): output-oriented, declarative schemes
- More natural treatment of cases that were problematic for the rigidly hierarchical structure of WFL
 - No unmotivated decisions on the derivational history of lexemes
- However, this means that a lot of potentially useful information of WFL is not represented in the Lemma Bank

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Including WFL into the LiLa Knowledge Base

- Modeling of WFL data into an ontology respecting the Linguistic Linked Open Data standards
- Reuse of classes and properties defined in existing ontologies
 - OntoLex core model
 - OntoLex Variation & Translation module (vartrans)
 - OntoLex Morphology module (morph)
 - LexInfo
 - LiLa
- Definition of new classes and properties specific to the WFL ontology
- Matteo Pellegrini, Eleonora Litta, Marco Passarotti, Francesco Mambrini, Giovanni Moretti The Two Approaches to Word Formation in the LiLa Knowledge Base of Latin Resources Third International Workshop on Resources and Tools for Derivational Morphology, 2021

Architecture of the OntoLex Morphology module (morph)

Architecture of morph: word formation

Linking Latin

Architecture of the WFL ontology

Treatment of conversion in the WFL ontology

Treatment of suffixation in the WFL ontology

Matteo Pellegrini | CIRCSE, Università Cattolica del Sacro Cuore

Treatment of prefixation in the WFL ontology

Matteo Pellegrini | CIRCSE, Università Cattolica del Sacro Cuore

Treatment of compounding in the WFL ontology

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

- The Lemma Bank currently includes also 63,621 Medieval Latin lemmas, taken from Du Cange's Glossarium mediæ et infimæ latinitatis
- WFL only provides information on 44,249 Classical Latin lemmas, taken from Glare 2012, Georges 1998, Gradenwitz 1904
- As a consequence, also in the Lemma Bank information on affixes and bases is provided only for such Classical Latin lemmas
 - \Rightarrow Current project:
 - including (some of) Du Cange's lemmas into WFL;
 - providing derivational information on such lemmas also in the Knowledge Base.

The method

- Identification of the most frequent derivational processes in WFL
- Automatic extraction of pairs of base-derivative candidates

process	example	n. pairs in WFL	n. candidate pairs
V-to-V prefixation	$\texttt{DUCO} \rightarrow \texttt{CONDUCO}$	4,712	2,194
V-to-N -(t)io suffixation	$ABIURO \to ABIURATIO$	2,555	381
V-to-N -(t)or suffixation	$AMO \to AMATOR$	1,419	304
A-to-N -tas suffixation	PAGANUS ightarrow PAGANITAS	623	225

- Manual validation of the extracted pairs (work in progress with Claudia Corbetta and Martina Verdelli)
- Connection of the pairs where both the base and the derivative are Medieval Latin lemmas to existing WFL trees

- The source of information is a glossary, not a dictionary
- Derivational information is not systematically provided

 → need for a case-by-case evaluation of the derivational relatedness of candidate pairs
- Not even semantic information is always provided
 - \rightarrow the evaluation is sometimes difficult
- ► Many entries are very substandard words, in some cases even simply copyists' mistakes → impossible to provide derivational information in such cases

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL uture

Building the Latin derivational paradigm

Inflection

- A paradigm-oriented perspective (Kyjánek 2020) to word formation is gaining ground (Van Marle 1984; Bauer 1997; Bauer 2019; Pounder 2000, Štekauer 2014, ...)
- Building derivational paradigms for Latin is a promising way to:
 - > avoid the issues caused by the rigidly hierarchical, rule-based structure of WFL...
 - ...without the loss of information caused by the flat, family-based structure of the Lemma Bank.
- However, building a systematic derivational paradigm i.e., capable to account for all the lexemes of a language – is not a trivial task (cf. Bonami and Strnadová 2019)
- What are the cells of the Latin derivational paradigm?
Building the Latin derivational paradigm

Litta and Budassi 2020 \to formal approach \to cells are inferred from the rules of WFL and expressed with a CxM-based notation

TABLE 6.13 Core derivational paradigm for Latin filled with lemmas with bases FAC-, DIC-, AG-

BASE [X]	FAC-	DIC-	AG-
$[x]_V \leftrightarrow [sem]_V$	facio	dico	ago
$[x]_N \leftrightarrow [sem]_N$	factus	dictus	actus
	factum	dictum	actum
$[x]_A \leftrightarrow [sem]_A$			
$[[x](t)io]_N \leftrightarrow [action of sem]_N$	factio	dicio	actio
$[[x](t)or]_N \leftrightarrow [one who sem]_N$	factor	dictor	actor
$[[x]]_j \text{ os}]_A \leftrightarrow [\text{full of Sem}_j]_A$			actuosus
$[[x]_j ari]_A \leftrightarrow [having qualities of SEM_j]$			actuarius
$[[x]_i \text{ trix}]_N \leftrightarrow [a \text{ female who SEM}_i]_N$	factrix		actrix
[[x] _j ari] _N ↔ [[dealer in sем _j] _N	factionarius		actuaria
о О			actuarius

A formal approach

The structure is not fully parallel to inflectional paradigms in that the definition of cells is based on form-meaning pairs

base [x]	$[[x]age]_N \leftrightarrow [action \text{ of sem}]_N$	$[[x]ment]_N \leftrightarrow [action \text{ of SEM}]_N$
laver	lavage	_
gonfler	_	gonflement

Derivational paradigm

base [x]	$[[x]us]_N \leftrightarrow [\texttt{SEM.NOM.SG}]_N$	$[[x]a]_N \leftrightarrow [\texttt{SEM.NOM.SG}]_N$
lup-	lupus	_
ros-	_	rosa

Inflectional paradigm

A semantic approach

Another option would be to define cells based on meaning alone

base [x]	action of SEM
laver	lavage
gonfler	gonflement

Derivational paradigm

base [x]	SEM.NOM.SG
ros-	rosa
lup-	lupus

Inflectional paradigm

✓ Parallel to the definition of cells in inflectional paradigms

 \rightarrow it would allow to model competition between derivational processes by the same means that have been deployed to model inflectional predictability (cf. Bonami and Strnadová 2019)

Need for a systematic coding of morphosemantic relations that is currently lacking (and difficult to achieve)

Outline

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Information on inflection in the Lemma Bank

An ontology for Latin principal parts Discussion and next steps

Information on inflection in the Lemma Bank

The Lemma Bank is a collection of citation forms:

- PRS.ACT.IND.1SG for verbs (PRS.PASS.IND.1SG for deponents, PRS.ACT.IND.3SG for impersonals);
- NOM.(M).SG for nouns (and adjectives) (NOM.PL for pluralia tantum).
- Citation forms are linked to their InflectionType through a dedicated property hasInflectionType
- InflectionTypes correspond to the traditional conjugations of verbs, declensions of nouns and classes of adjectives
- In addition, participial forms of verbs are provided as instances af the class Hypolemma, linked to their Lemma through the property isHypolemma

Verb conjugations

laudo http://lila-erc.eu/data	/id/lemma/110078		laudatus http://lila-erc.eu/data	/id/hypolemma/25328	
			lila: isHypolemma	<http: data="" id="" l<br="" lila-erc.eu="">+ laudo</http:>	emma/110078>
rdfs: label	laudo		ontolex: writtenRep	laudatus	
ontolex: writtenRep	laudo		rdf: type	lila:Hypolemma + Hypolemma	
rdf: type	lila:Lemma ↓ Lemma				
ila: hasBase	<http: 217="" base="" data="" id="" lila-erc.eu=""></http:>	Conj.	Sample lexeme	PRS.ACT.INF	PRS.ACT
	⊾ Base of laus	1 st	LAUDO 'praise'	laudāre	laudant
lila:hasInflectionType	lila:v1r 🛏 first conjugation verb	2 3 rd 4 th	LEGO 'read' VENIO 'come'	legere venīre	legunt veniunt
lila:hasPOS	lila:verb ⊷ verb	mix.	CAPIO 'take'	capere	capiunt

Linking Lat

PRS.ACT.IND.3PL

Noun declensions

rosa

http://lila-erc.eu/data/id/lemma/122165

rdfs:label	rosa
ontolex:writtenRep	rhosa rosa
rdf: type	lila:Lemma ↓ Lemma
lila: hasBase	<pre><http: 2896="" base="" data="" id="" lila-erc.eu=""> + Base of rosa</http:></pre>
lila: hasGender	lila:feminine ↦ feminine
lila:hasInflectionType	lila:n1 🗣 first declension noun
lila:hasPOS	lila:noun ⇔ common noun

Adjective classes

magnus

http://lila-erc.eu/data/id/lemma/111319

rdfs:label	magnus
ontolex:writtenRep	magnus
rdf: type	lila:Lemma ↓ Lemma
lila: hasBase	<http: 2167="" base="" data="" id="" lila-erc.eu=""> + Base of magnus</http:>
lila:hasDegree	lila:positive + positive
lila:hasInflectionType	lila:n6 ⊶ first class adjective
lila:hasPOS	lila:adjective →adjective

Class	Sample lexeme	NOM.M.SG	NOM.F.SG	NOM.N.SG
1 st	MAGNUS 'big'	magnus	magna	magnum
2 nd	ACER 'sharp'	acer	acris	acre

Missing pieces

► However, traditional classifications capture only partly the inflectional behaviour of lexemes → the impact of stem allomorphy is disregarded

Present vs. perfect and third stem of verbs

Conj.	Sample lexeme	PRS.ACT.INF	PRF.ACT.IND.1SG	SUP.ACC
1 st	LAUDO 'praise'	laudāre	laudāvī	laudātum
1 st	CREPO 'rattle'	crepāre	crepuī	crepitum
1 st	SECO 'crack'	secāre	secuī	sectum

Direct vs. oblique cases of 3rd decl. nouns and 2nd class adjectives

Decl.	Sample lexeme	NOM.SG	GEN.SG
3 rd	URBS 'city'	urbs	urbis
3 rd	CONSUL 'consul'	consul	consulis
3 rd	FLUMEN 'river'	flumen	fluminis

Information on inflection in Latin traditional descriptions

- Latin dictionaries and grammars summarize (almost) the whole inflectional behaviour of lexemes by providing other **principal parts** alongside the citation form:
 - PRS.ACT.INF, PRF.ACT.INF.1SG, SUP.ACC for verbs;
 - GEN.SG for nouns;
 - NOM.F.SG and NOM.N.SG (when these forms are distinct from the citation form) or GEN.M/F/N.SG for adjectives.

```
laudō \simāre \simāuī \simātum, tr. [LAVS + -0<sup>3</sup>]

1 To praise, extol, commend, approve,

speak well of. b (w. abl. of cause; also, w.
```

urbs ~bis, f. [dub.] FORMS: urps VAR.R.
1.16.3.
1 A city, large town (either as a place or as

a political entity). b (w. name of city expr.

äcer[#] ācris ācre, a. compar. ācrior, suparl. ācerrimus. [cf. acvo, Gk. άκρος] FORMS: acris (nom. sg. masc.) ENN.Ann.369; acer (nom. sg. fem.) 424, ΝΑΣΥ.βοοί.33; acrum (acc. sg. masc.) ΜΑΤ.βοεί.5.

1 Sharp, pointed. b (of features) pinched,

The notion of principal parts have been recently recovered by theoretically-grounded studies → Stump and Finkel 2013, Bonami and Beniamine 2016

Outline

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Information on inflection in the Lemma Bank An ontology for Latin principal parts

Discussion and next steps

Principal parts and fine-grained inflectional information in LiLa

- We are working on a resource listing principal parts and providing fine-grained inflectional information for Latin verbs, nouns and adjectives
- ▶ This resource will be modeled into an ontology linked to the LiLa Knowledge Base
- Principal parts can be useful to accomodate resources that make lemmatization choices different than the ones of the LiLa Lemma Bank
 - Verbs that are sometimes lemmatized under PRF.ACT.IND.1SG
 - ightarrow e.g. COEPI (rather than COEPIO) 'begin'
 - ► Lexical resources that use PRS.ACT.INF as citation form → cf. Du Cange's Glossarium
 - \rightarrow cf. Du Cange's Glossarium
- Fine-grained inflectional information can be useful to allow for more sophisticated queries indentifying lexemes that follow patterns more specific than their traditional conjugation/declension
 - ▶ 3rd decl. nouns with NOM.SG in -o and GEN.SG in -inis
 - \rightarrow e.g. HOMO,HOMINIS 'man', VERTIGO,VERTIGINIS 'whirl', CALIGO,CALIGINIS 'mist', ...
- Both can be used to generate full paradigms for Latin lexemes

Generation of principal parts

- Principal parts are generated from the database of Lemlat, a recently renewed Latin morphological analyzer (Passarotti et al. 2017)
- For each lexeme, Lemlat's database lists a set of LExical Segments (LES) roughly corresponding to the stems used in different portions of the paradigm
- To each LES, Lemlat's database associate a CODLES that provides information on the ending compatible with that LES
- Joint information on LES and CODLES allows to generate 6 principal parts

informa	tion in Lemlat	generated	principal part
LES	CODLES	form	cell
KU10010 1/0K	rumpo	PRS.ACT.IND.1SG	
rump	0 V31	rumpere	PRS.ACT.INF
rup	V7s	rupi	PRF.ACT.IND.1SG
rupt	n41	ruptum	SUP.ACC
rupt	n6p1	ruptus	PRF.PTCP.NOM.M.SG
ruptur	n6p2	rupturus	FUT.PTCP.NOM.M.SG

- The stems of PRF.PTCP.NOM.M.SG and FUT.PTCP.NOM.M.SG almost always coincide with the stem of SUP.ACC, but there are a few cases where they are different → having them as additional principal parts
 - allows to generate full paradigms for all lexemes

Coding of fine-grained inflectional behaviour

We use binary alternation patterns to capture the inflectional behaviour of lexemes (Bonami and Boyé 2014, Beniamine 2018

lexeme	PRS.ACT.IND.1SG	PRS.ACT.INF	PRF.ACT.IND.1SG	PRS.1SG-INF	PRS.1SG-PRF	INF-PRF
LAUDO	laudo	laudare	laudaui	$o\rightleftharpoonsare$	$o \rightleftharpoons aui$	$re \rightleftharpoons ui$
CUBO	cubo	cubare	cubui	$o\rightleftharpoonsare$	$o\rightleftharpoonsui$	$are \rightleftharpoons ui$
MONEO	moneo	monere	monui	$o\rightleftharpoonsre$	$eo\rightleftharpoonsui$	$ere \rightleftharpoons ui$
DELEO	deleo	delere	deleui	$o \rightleftharpoons re$	$eo \rightleftharpoons eui$	$re \rightleftharpoons ui$

This procedure has the advantage of being applicable algorithmically

 ≠ global segmentation in stem vs. endings valid for all paradigm cells (cf. Beniamine 2018)

We use the Qumin toolkit to extract alternation patterns between all pairs of principal parts (without context because our data is in orthographic rather than phonological transcription) Cases of **overabundance**: sometimes more than one form can be generated for the same cell \rightarrow this would cause a multiplication of alternation patterns

Due to the availability of different stem allomorphs

lexeme	PRS.ACT.IND.1SG	PRS.ACT.INF	PRF.ACT.IND	SUP.ACC	PRS.INF-PRF.IND
ABALIENO	abalien o	abalien are	abalien aui	abalien atum	$re \rightleftharpoons ui, i_re \rightleftharpoons ui,$
'separate'	abalen o	abalen are	abalen aui	abalen atum	_re ≓ i_ui

Due to the possibility of different inflection class assignments

lexeme	PRS.ACT.IND.1SG	PRS.ACT.INF	PRF.ACT.IND	SUP.ACC	PRS.INF-PRF.IND
LAVO	lau o	lau are	lau aui	lau atum	$re \rightleftharpoons ui$, are $\rightleftharpoons ui$,
'wash'	lau o	lau ere	lau i	lau tum	ere \rightleftharpoons aui, ere \rightleftharpoons ui

The notion of flexeme

- Fradin and Kerleroux 2003 \rightarrow proposal to distinguish between:
 - lexemes \rightarrow lexical units with a unique meaning
 - ▶ flexemes → lexical units with a unique form (i.e., a unique inflectional paradigm)
- This distinction was originally introduced to account for mismatches where one flexeme maps to different lexemes:
 - derivatives that select a specific meaning among the ones of the base or a "French Fill" ("sind daughter") > Fill FTTF (meall daughter)

e.g. French FILLE 'girl, daughter' \rightarrow FILLETTE 'small girl' (*'small daughter')

flexeme	lexeme	SG	PL
	FILLE1 'girl'	fille	filles
FILLE	FILLE ₂ 'daughter'	fille	filles

- It has been recently applied to mismatches where one lexeme maps to different flexemes (Thornton 2018, Bonami and Crysmann 2018)
 - overabundance, e.g. Italian gender-alternating noun ORECCHIO_M/ORECCHIA_F 'ear'

lexeme	flexeme	SG	PL
	ORECCHIO	orecchio	orecchi
ORECCHIO/-A	ORECCHIA	orecchia	orecchie

A collection of flexemes

- Our resource is a collection of flexemes rather than lexemes (a "flexicon")
- This is conceptually motivated by the fact that "inflection is about flexemes" (Bonami and Crysmann 2018: 184)
- This also allows to:
 - avoid the multiplication of patterns;
 - express the connection between forms that display the same stem or belong to the same inflection class.

	lexeme	flexeme	PRS.ACT.INF	PRF.ACT.IND	PRS.INI	-PRF.IND
	LAVO (wash)	LAVO _{1st}	lau are	lau aui	$re \rightleftharpoons$	ui
	LAVO WASH	LAVO _{3rd}	lau ere	lau i	ere =	≐ ui
lexen	ne	flexeme	PRS.ACT.INF	PRF.ACT.IN	ID.1SG	PRS.INF-PRF.IND
A D A I /I	IENIO (separate)	ABALIENO	abalien ar	re abalien a	iui	re ≓ ui
ABAL(I)ENO SEPARALE		ABALENO	abalen ar	e abalen a	ui	re ⇒ ui

Architecture of the LatInFlexi ontology

Linking Latin

Architecture of the LatInFlexi ontology

Each Flexeme is connected:

- to the corresponding Lemma in the Lemma Bank through the property ontolex:canonicalForm;
- to its principal parts through the property ontolex:otherForm;
- to the Pattern between each of its principal parts through the property latinflexi:hasPattern
- Each Form is linked to the Cell it fills through the property latinflexi:fillsCell
- Each Pattern is linked to the Cells it relates through the property latinflexi:relates
- Each Cell is coded using the schema of the UniMorph project (Sylak-Glassman 2016) \rightarrow a olia annotation model is available for this tagset (Chiarcos, Fäth, and Abromeit 2020) that allows for integration with other vocabularies for linguistic description (e.g. ISOCat, GOLD)
- The overall inflection (micro)class is not stored, but it can be inferred → two flexemes belong to the same class if they share the exact same patterns

Example: LAUDO

Example: ABALIENO

Linking Lati

Flexeme-Lemma mapping

Overabundance due to the availability of different stem allomorphs

 different flexemes map to the same lemma

- Overabundance due to the possibility of different inflection class assignments

 → different flexemes map to different lemmas
 (due to modeling choices of the Lemma Bank)
 - Lexemic identity is not lost thanks to the property lila:lemmaVariant between the two lemmas

unit	n.
Forms	39,438
Flexemes	10,716
Lemmas	7,973

(only Classical Latin verbs, excluding a few irregulars and their derivatives)

Outline

Introduction

Linked Data Principles LiLa: Linking Latin

Word formation

Past

Word Formation Latin (WFL)

Word Formation in the Lemma Bank

Including WFL into the LiLa Knowledge Base

Present

Adding Medieval Latin lemmas to WFL

Future

Building the Latin derivational paradigm

Inflection

Information on inflection in the Lemma Bank An ontology for Latin principal parts Discussion and next steps

An alternative modeling choice: Lexemes as lexical entries

Alternative modeling choices: a comparison

Flexemes as lexical entries

- ✓ allows to use ontolex vocabulary for the linking with Forms
- X lexemes have no explicit representation
 (LiLa's lemmas are ontolex:forms!)

Lexemes as lexical entries

- ✓ lexemes have an explicit representation
- >> need for new vocabulary to link Flexemes
 to Forms
- redundancy: for most Lexemes there is a 1:1 mapping with Lemmas
- Iack of homogeneity: a different treatment is required in cases where several Flexemes correspond to same Lemma

Lexeme-Lemma mapping: 1:2

Linking Lati

Lexeme-Lemma mapping: 2:2

Linking Lati

Adaptive principal parts

- ► We have seen that we have three different principal parts for SUP.ACC, PRF.PTCP.NOM.M.SG and FUT.PTCP.NOM.M.SG, as there are a few verbs for which these cells are based on different stems
- ► However, for the overwhelming majority of verbs these three cells are interpredictable
- A more economical solution might be to provide **adaptive** principal parts (Stump and Finkel 2013), i.e. listing additional forms only for verbs that need them:

ABUTOR 'consume'		MORIOR 'die'		
form	cell	form	cell	
abutor	PRS.PASS.IND.1SG	morior	PRS.PASS.IND.1SG	
abuti	PRS.PASS.INF	mori	PRS.PASS.INF	
_	PRF.ACT.IND.1SG	_	PRF.ACT.IND.1SG	
abusus	PRF.PTCP.NOM.M.SG	mortuus	PRF.PTCP.NOM.M.SG	
_	FUT.PTCP.NOM.M.SG	moriturus	FUT.PTCP.NOM.M.SG	

Troubles with flexemes

- We start from the strong assumption that all cases of overabundance should yield the introduction of distinct flexemes ⇒ the entries of our lexicon are never overabundant
- Theoretical issue: previous studies leave this question open (cf. Thornton 2018: 312-3, Bonami and Crysmann 2018: 198)
- Practical issue: in some cases, the identification of flexemes is not straightforward
- \blacktriangleright Cases of non-systematic overabundance across different cells \rightarrow multiplication of flexemes

lexeme	PRS.ACT.IND.1SG	PRS.ACT.INF	SUP.ACC
TERC(E)O (cloanso)	tergeo	tergēre	tersum
TERG(E)O CIEdHSE	tergo	tergere	tertum

ightarrow 4 Flexemes

The situation can be far more complex!

Example: TERG(E)O

Matteo Pellegrini | CIRCSE, Università Cattolica del Sacro Cuore

Phonological distinctions

Coding phonological distinctions

- Distinction between semivocalic and vocalic <i> (/j/ vs. /i/) and <u> (/u/ vs. /w/)
- Vovel length
 - \rightarrow remarkable impact on alternation patterns!
 - e.g. PRS.ACT.IND.3SG venit vs. PRF.ACT.IND.3SG vēnit

Source: Lewis and Short 1879?

- ✓ Available in machine-readable format
- ✓ Recently added to the Knowledge Base (Mambrini et al. 2021)
- ✗ Not among the dictionaries on which Lemlat is based
 - \rightarrow only partial overlap with the entries of our lexicon
- X Vowel length is not marked when it is phonologically predictable

Full paradigms

- Using morph vocabulary to express rules to generate all the wordforms of (a selection of) lexemes from the principal parts
- Integration of our ontology with morph can be achieved by establishing a sub-class relation between the (dynamically generated?) latinflexi:MicroClass and morph:Paradigm

- Each flexeme can be said to belong to a microclass that is composed of all the patterns that are displayed between the principal parts of that lexeme
- ► This information can be inferred → two flexemes belong to the same microclass if they share the exact same patterns
 - ✓ remarkable reduction of stored triples
- However, having this information stored explicitly would allow for:
 - ✓ simpler queries to extract the overall class;
 - ✓ an easier integration with morph (by establishing a subclass relation between our microclass and morph:Paradigm)

Using the frac (Frequency, Attestation and Corpus information) module of Ontolex to provide corpus frequencies for the generated wordforms

- Corpora with the appropriate level of granularity:
 - Treebanks
 - Index Thomisticus Treebank (Passarotti 2011)
 - UDante (Cecchini et al. 2020)
 - Latin Dependency Treebank (Bamman and Crane 2011))
 - PROIEL (Haug and Jøhndal 2008)
 - Late Latin Charter Treebank (Cecchini, Korkiakangas, and Passarotti 2020)
 - Computational Historical Semantics corpus
 - LASLA corpus?

(annotation uninformative on gender for adjectives)

Stored and dynamically generated triples

Claudia Corbetta, Eleonora Litta, Francesco Mambrini, Giovanni Moretti, Marco Passarotti, Martina Verdelli

Matteo Pellegrini CIRCSE, Università Cattolica del Sacro Cuore

matteo.pellegrini@unicatt.it

- \mathbf{O} https://github.com/CIRCSE
- https://lila-erc.eu
- 0 Largo Gemelli 1, 20123 Milan, Italy

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme - Grant Agreement No. 769994.

Bamman, David and Gregory Crane (2011), "The ancient Greek and Latin dependency treebanks. Selected Papers from the LaTeCH Workshop Series", In: Language Technology for Cultural Heritage, Ed. by Caroline Sporleder, Antal van den Bosch, and Kalliopi Zervanou, Theory and Applications of Natural Language Processing, Berlin/Heidelberg, Germany: Springer, pp. 79–98. Bauer, Laurie (1997). "Derivational paradigms". In: Yearbook of morphology 1996. Springer, pp. 243-256. (2019). "Notions of paradigm and their value in word-formation". In: Word Structure 12.2, pp. 153-175. Beniamine, Sacha (2018). "Classifications flexionnelles. Étude quantitative des structures de paradigmes". PhD thesis. Université Sorbonne Paris Cité-I Iniversité Paris Diderot Bonami, Olivier and S. Benjamine (2016), "Joint predictiveness in inflectional paradigms", In: Word Structure 9.2, pp. 156–182, Bonami, Olivier and Gilles Boyé (2014). "De formes en thèmes". In: Foisonnements morphologiques. Études en hommage à Françoise Kerleroux, Ed. by Florence Villoing, Sarah Leroy, and Sophie David, Paris: Presses Universitaires de Paris-Ouest, pp. 17-45. Bonami, Olivier and Berthold Crysmann (2018), "Lexeme and flexeme in a formal theory of grammar". In: The lexeme in descriptive and theoretical morphology 4, p. 175. Bonami, Olivier and Jana Strnadová (2019). "Paradigm structure and predictability in derivational morphology". In: Morphology 29.2. pp. 167-197. Booii, Geert (2010), "Construction morphology", In: Language and linguistics compass 4.7, pp. 543–555. Budassi, Marco and Eleonora Litta (2017). "In Trouble with the Rules, Theoretical Issues Raised by the Insertion of -sc- Verbs into Word Formation Latin", In: Proceedings of the Workshop on Resources and Tools for Derivational Morphology (DeriMo), pp. 15–26. Cecchini, Flavio M, et al. (2020). "UDante: First Steps Towards the Universal Dependencies Treebank of Dante's Latin Works". In: Seventh Italian Conference on Computational Linguistics, Bologna: CEUR-WS.org, pp. 1–7, URL: http://ceur-ws.org/Vol-2769/paper_14.pdf.

Works cited II

Cecchini, Flavio Massimiliano, Timo Korkiakangas, and Marco Passarotti (May 2020). "A New Latin Treebank for Universal Dependencies: Charters between Ancient Latin and Romance Languages". English. In: *Proceedings of the 12th Language Resources and Evaluation Conference*. Marseille, France: European Language Resources Association, pp. 933–942. ISBN: 979-10-95546-34-4. URL:

https://aclanthology.org/2020.lrec-1.117.

Chiarcos, Christian, Christian Fäth, and Frank Abromeit (2020). "Annotation Interoperability for the Post-ISOCat Era". In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 5668–5677.

Cimiano, Philipp et al. (2020). Linguistic Linked Data. Springer.

- Fradin, Bernard and Françoise Kerleroux (2003). "Troubles with lexemes". In: Selected papers from the third Mediterranean Morphology Meeting, pp. 177–196.
- Georges, Karl Ernst (1998). Ausführliches lateinisch-deutsches Handwörterbuch. Aus den Quellen zusammengetragen und mit besonderer Bezugnahme auf Synonymik und Antiquitäten unter Berücksichtigung der besten Hilfsmittel ausgearbeitet. Unveränderter Nachdruck der achten verbesserten und vermehrten Auflage. Ed. by Heinrich Georges. Reprint of first edition of 1913–1918, Hannover, Germany: Hahnsche Buchhandlung. Darmstadt, Germany: Wissenschaftliche Buchgesellschaft. URL: http://www.zeno.org/Georges-1913.
- Glare, Peter G. W. (2012). Oxford Latin Dictionary. Ed. by Alexander Souter. Oxford Languages. Oxford, UK: Oxford University Press. ISBN: 978-0-19-958031-6.
- Gradenwitz, Otto (1904). Laterculi vocum Latinarum: voces Latinas et a fronte et a tergo ordinandas. Leipzig: Hirzel.
- Haug, Dag Trygve Truslew and Marius Jøhndal (May 2008). "Creating a Parallel Treebank of the Old Indo-European Bible Translations". In: Proceedings of the Second Workshop on Language Technology for Cultural Heritage Data (LaTeCH 2008). Ed. by Caroline Sporleder and Kiril Ribarov. Marrakesh, Morocco: European Language Resources Association (ELRA), pp. 27–34. URL:
 - http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf.
- Kyjánek, Lukáš (2020). "Harmonisation of Language Resources for Word-Formation of Multiple Languages". MA thesis. Univerzita Karlova, Matematicko-fyzikální fakulta.

- Lewis, Charlton Thomas and Charles Short (1879). A Latin Dictionary. Founded on Andrews' edition of Freund's Latin dictionary revised, enlarged, and in great part rewritten by Charlton T. Lewis, Ph. D. and Charles Short, LL. D. Ed. by E. A. Andrews. Oxford, UK: Clarendon Press. ISBN: 978-1-99-985578-9. URL: https://logeion.uchicago.edu.
- Litta, Eleonora and Marco Budassi (2020). "What we talk about when we talk about paradigms: representing Latin word formation". In: Paradigmatic relations in word formation. Brill, pp. 128–163.
- Mambrini, Francesco et al. (Sept. 2021). "Interlinking Valency Frames and WordNet Synsets in the LiLa Knowledge Base of Linguistic Resources for Latin". eng. In: *Further with Knowledge Graphs*. Vol. 53. Studies on the Semantic Web, pp. 16–28. DOI: 10.3233/SSW210032. URL: https://zenodo.org/record/5482432 (visited on 09/07/2021).
- Passarotti, Marco Carlo (2011). "Language resources. The state of the art of Latin and the Index Thomisticus treebank project". In: Deuxiéme Colloque International ALIENTO. ALIENTO, pp. 301–320.
- Pounder, Amanda (2000). Processes and Paradigms in Word-Formation Morphology. DeGruyter.
- Štekauer, Pavol (2014). "Derivational paradigms". In: The Oxford handbook of derivational morphology, pp. 354–369.
- Stump, Gregory T. and Raphael A. Finkel (2013). Morphological typology: From word to paradigm. Cambridge: Cambridge University Press. Sylak-Glassman, John (2016). The composition and use of the universal morphological feature schema (UniMorph schema). Tech. rep.
 - Department of Computer Science, Johns Hopkins University.
- Thornton, Anna M (2018). "Troubles with flexemes". In: The lexeme in descriptive and theoretical morphology 4, p. 303.
- Van Marle, Jaap (1984). On the paradigmatic dimension of morphological creativity. Foris.
- Wilkinson, Mark D et al. (2016). "The FAIR Guiding Principles for scientific data management and stewardship". In: Scientific data 3.1, pp. 1–9.