Adaptation in Pronoun Resolution: Evidence from Brazilian and European Portuguese

TitleAdaptation in Pronoun Resolution: Evidence from Brazilian and European Portuguese
Publication TypeArticle de revue
Année de publication2018
AuthorsFernandes, Eunice, Paula Luegi, Eduardo Correa Soares, Israel de la Fuente, and Barbara Hemforth
JournalJournal of Experimental Psychology: Learning, Memory, and Cognition

Previous research accounting for pronoun resolution as a problem of probabilistic inference has not explored the phenomenon of adaptation, whereby the processor constantly tracks and adapts, rationally, to changes in a statistical environment. We investigate whether Brazilian (BP) and European Portuguese (EP) speakers adapt to variations in the probability of occurrence of ambiguous overt and null pronouns, in two experiments assessing resolution towards subject and object referents. For each variety (BP, EP), participants were faced with either the same number of null and overt pronouns (equal distribution), or with an environment with fewer overt (than null) pronouns (unequal distribution). We find that the preference for interpreting overt pronouns as referring back to an object referent (object-biased interpretation) is higher when there are fewer overt pronouns (i.e., in the unequal, relative to the equal distribution condition). This is especially the case for BP, a variety with higher prior frequency and smaller object-biased interpretation of overt pronouns, suggesting that participants adapted incrementally and integrated prior statistical knowledge with the knowledge obtained in the experiment. We hypothesize that comprehenders adapted rationally, with the goal of maintaining, across variations in pronoun probability, the likelihood of subject and object referents. Our findings unify insights from research in pronoun resolution and in adaptation, and add to previous studies in both topics: They provide evidence for the influence of pronoun probability in pronoun resolution, and for an adaptation process whereby the language processor not only tracks statistical information, but uses it to make interpretational inferences.